Вариант 1 Использование transform
In [13]: dfc = df.groupby('y')['c']
In [14]: df.assign(min=dfc.transform(min), max=dfc.transform(max))
Out[14]:
c y max min
0 9 0 9 8
1 8 0 9 8
2 3 1 3 3
3 6 2 6 6
4 1 3 5 1
5 2 3 5 1
6 5 3 5 1
7 4 4 7 0
8 0 4 7 0
9 7 4 7 0
Или
In [15]: df['min' ] = dfc.transform('min')
In [16]: df['max' ] = dfc.transform('max')
Вариант 2 Использовать объединение и агг
In [30]: df.join(df.groupby('y')['c'].agg(['min', 'max']), on='y')
Out[30]:
c y min max
0 9 0 8 9
1 8 0 8 9
2 3 1 3 3
3 6 2 6 6
4 1 3 1 5
5 2 3 1 5
6 5 3 1 5
7 4 4 0 7
8 0 4 0 7
9 7 4 0 7
Вариант 3 Использовать слияние и агг
In [28]: df.merge(df.groupby('y')['c'].agg(['min', 'max']), right_index=True, left_on='y')
Out[28]:
c y min max
0 9 0 8 9
1 8 0 8 9
2 3 1 3 3
3 6 2 6 6
4 1 3 1 5
5 2 3 1 5
6 5 3 1 5
7 4 4 0 7
8 0 4 0 7
9 7 4 0 7