Ниже приведен модуль (закодированный в f90), содержащий три формулы, обсуждавшиеся в предыдущих ответах. Вы можете поместить этот модуль в верхней части вашей программы
(до PROGRAM MAIN) или скомпилируйте его отдельно и включите каталог модуля во время компиляции. Следующий модуль содержит три формулы. Первые два - это расстояния большого круга, основанные на предположении, что Земля сферическая.
module spherical_dists
contains
subroutine great_circle_distance(lon1,lat1,lon2,lat2,dist)
!https://en.wikipedia.org/wiki/Great-circle_distance
! It takes lon, lats of two points on an assumed spherical earth and
! calculates the distance between them along the great circle connecting the two points
implicit none
real,intent(in)::lon1,lon2,lat1,lat2
real,intent(out)::dist
real,parameter::pi=3.141592,mean_earth_radius=6371.0088
real::lonr1,lonr2,latr1,latr2
real::delangl,dellon
lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
dellon=lonr2-lonr1
delangl=acos(sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon))
dist=delangl*mean_earth_radius
end subroutine
subroutine haversine_formula(lon1,lat1,lon2,lat2,dist)
! https://en.wikipedia.org/wiki/Haversine_formula
! This is similar above but numerically better conditioned for small distances
implicit none
real,intent(in)::lon1,lon2,lat1,lat2
!lon, lats of two points
real,intent(out)::dist
real,parameter::pi=3.141592,mean_earth_radius=6371.0088
real::lonr1,lonr2,latr1,latr2
real::delangl,dellon,dellat,a
! degrees are converted to radians
lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
dellon=lonr2-lonr1 ! These dels simplify the haversine formula
dellat=latr2-latr1
! The actual haversine formula
a=(sin(dellat/2))**2+cos(latr1)*cos(latr2)*(sin(dellon/2))**2
delangl=2*asin(sqrt(a)) !2*asin(sqrt(a))
dist=delangl*mean_earth_radius
end subroutine
subroutine vincenty_formula(lon1,lat1,lon2,lat2,dist)
!https://en.wikipedia.org/wiki/Vincenty%27s_formulae
!It's a better approximation over previous two, since it considers earth to in oblate spheroid, which better approximates the shape of the earth
implicit none
real,intent(in)::lon1,lon2,lat1,lat2
real,intent(out)::dist
real,parameter::pi=3.141592,mean_earth_radius=6371.0088
real::lonr1,lonr2,latr1,latr2
real::delangl,dellon,nom,denom
lonr1=lon1*(pi/180.);lonr2=lon2*(pi/180.)
latr1=lat1*(pi/180.);latr2=lat2*(pi/180.)
dellon=lonr2-lonr1
nom=sqrt((cos(latr2)*sin(dellon))**2. + (cos(latr1)*sin(latr2)-sin(latr1)*cos(latr2)*cos(dellon))**2.)
denom=sin(latr1)*sin(latr2)+cos(latr1)*cos(latr2)*cos(dellon)
delangl=atan2(nom,denom)
dist=delangl*mean_earth_radius
end subroutine
end module