Как обновить скорость обучения в двухслойном многослойном персептроне? - PullRequest
0 голосов
/ 18 января 2019

Учитывая проблему XOR:

X = xor_input = np.array([[0,0], [0,1], [1,0], [1,1]])
Y = xor_output = np.array([[0,1,1,0]]).T

И простой

  • двухслойный многослойный персептрон (MLP) с
  • сигмовидная активация между ними и
  • Среднеквадратичная ошибка (MSE) как функция потерь / критерий оптимизации

[код]:

def sigmoid(x): # Returns values that sums to one.
    return 1 / (1 + np.exp(-x))

def sigmoid_derivative(sx): # For backpropagation.
    # See https://math.stackexchange.com/a/1225116
    return sx * (1 - sx)

# Cost functions.
def mse(predicted, truth):
    return np.sum(np.square(truth - predicted))

X = xor_input = np.array([[0,0], [0,1], [1,0], [1,1]])
Y = xor_output = np.array([[0,1,1,0]]).T

# Define the shape of the weight vector.
num_data, input_dim = X.shape
# Lets set the dimensions for the intermediate layer.
hidden_dim = 5
# Initialize weights between the input layers and the hidden layer.
W1 = np.random.random((input_dim, hidden_dim))

# Define the shape of the output vector. 
output_dim = len(Y.T)
# Initialize weights between the hidden layers and the output layer.
W2 = np.random.random((hidden_dim, output_dim))

И учитывая критерии остановки как фиксированное нет. эпох (число итераций по X и Y) с фиксированной скоростью обучения 0,3:

# Initialize weigh
num_epochs = 10000
learning_rate = 0.3

Когда я бегу по распространению вперед-назад и обновляю веса в каждую эпоху, как мне обновлять веса?

Я пытался просто сложить произведение скорости обучения с точечным произведением обратно распространенной производной с выходами слоя, но модель все еще обновляла веса только в одном направлении, в результате чего все веса снижались почти до нуля.

for epoch_n in range(num_epochs):
    layer0 = X
    # Forward propagation.

    # Inside the perceptron, Step 2. 
    layer1 = sigmoid(np.dot(layer0, W1))
    layer2 = sigmoid(np.dot(layer1, W2))

    # Back propagation (Y -> layer2)

    # How much did we miss in the predictions?
    layer2_error = mse(layer2, Y)

    #print(layer2_error)
    # In what direction is the target value?
    # Were we really close? If so, don't change too much.
    layer2_delta = layer2_error * sigmoid_derivative(layer2)

    # Back propagation (layer2 -> layer1)
    # How much did each layer1 value contribute to the layer2 error (according to the weights)?
    layer1_error = np.dot(layer2_delta, W2.T)
    layer1_delta = layer1_error * sigmoid_derivative(layer1)

    # update weights
    W2 += - learning_rate * np.dot(layer1.T, layer2_delta)
    W1 += - learning_rate * np.dot(layer0.T, layer1_delta)
    #print(np.dot(layer0.T, layer1_delta))
    #print(epoch_n, list((layer2)))

    # Log the loss value as we proceed through the epochs.
    losses.append(layer2_error.mean())

Как правильно обновлять веса?

Полный код:

from itertools import chain
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)

def sigmoid(x): # Returns values that sums to one.
    return 1 / (1 + np.exp(-x))

def sigmoid_derivative(sx):
    # See https://math.stackexchange.com/a/1225116
    return sx * (1 - sx)

# Cost functions.
def mse(predicted, truth):
    return np.sum(np.square(truth - predicted))

X = xor_input = np.array([[0,0], [0,1], [1,0], [1,1]])
Y = xor_output = np.array([[0,1,1,0]]).T

# Define the shape of the weight vector.
num_data, input_dim = X.shape
# Lets set the dimensions for the intermediate layer.
hidden_dim = 5
# Initialize weights between the input layers and the hidden layer.
W1 = np.random.random((input_dim, hidden_dim))

# Define the shape of the output vector. 
output_dim = len(Y.T)
# Initialize weights between the hidden layers and the output layer.
W2 = np.random.random((hidden_dim, output_dim))

# Initialize weigh
num_epochs = 10000
learning_rate = 0.3

losses = []

for epoch_n in range(num_epochs):
    layer0 = X
    # Forward propagation.

    # Inside the perceptron, Step 2. 
    layer1 = sigmoid(np.dot(layer0, W1))
    layer2 = sigmoid(np.dot(layer1, W2))

    # Back propagation (Y -> layer2)

    # How much did we miss in the predictions?
    layer2_error = mse(layer2, Y)

    #print(layer2_error)
    # In what direction is the target value?
    # Were we really close? If so, don't change too much.
    layer2_delta = layer2_error * sigmoid_derivative(layer2)

    # Back propagation (layer2 -> layer1)
    # How much did each layer1 value contribute to the layer2 error (according to the weights)?
    layer1_error = np.dot(layer2_delta, W2.T)
    layer1_delta = layer1_error * sigmoid_derivative(layer1)

    # update weights
    W2 += - learning_rate * np.dot(layer1.T, layer2_delta)
    W1 += - learning_rate * np.dot(layer0.T, layer1_delta)
    #print(np.dot(layer0.T, layer1_delta))
    #print(epoch_n, list((layer2)))

    # Log the loss value as we proceed through the epochs.
    losses.append(layer2_error.mean())

# Visualize the losses
plt.plot(losses)
plt.show()

Я что-то упускаю в обратном распространении?

Может быть, я пропустил производную от стоимости до второго слоя?


Отредактировано

Я понял, что пропустил частную производную от стоимости до второго слоя и после добавления:

# Cost functions.
def mse(predicted, truth):
    return 0.5 * np.sum(np.square(predicted - truth)).mean()

def mse_derivative(predicted, truth):
    return predicted - truth

С обновленной петлей обратного распространения в разные эпохи:

for epoch_n in range(num_epochs):
    layer0 = X
    # Forward propagation.

    # Inside the perceptron, Step 2. 
    layer1 = sigmoid(np.dot(layer0, W1))
    layer2 = sigmoid(np.dot(layer1, W2))

    # Back propagation (Y -> layer2)

    # How much did we miss in the predictions?
    cost_error = mse(layer2, Y)
    cost_delta = mse_derivative(layer2, Y)

    #print(layer2_error)
    # In what direction is the target value?
    # Were we really close? If so, don't change too much.
    layer2_error = np.dot(cost_delta, cost_error)
    layer2_delta = layer2_error *  sigmoid_derivative(layer2)

    # Back propagation (layer2 -> layer1)
    # How much did each layer1 value contribute to the layer2 error (according to the weights)?
    layer1_error = np.dot(layer2_delta, W2.T)
    layer1_delta = layer1_error * sigmoid_derivative(layer1)

    # update weights
    W2 += - learning_rate * np.dot(layer1.T, layer2_delta)
    W1 += - learning_rate * np.dot(layer0.T, layer1_delta)

Казалось, что ты тренируешься и изучаешь XOR ...

Но теперь возникает вопрос: правильно ли вычислены layer2_error и layer2_delta, т. Е. является ли правильной следующая часть кода?

# How much did we miss in the predictions?
cost_error = mse(layer2, Y)
cost_delta = mse_derivative(layer2, Y)

#print(layer2_error)
# In what direction is the target value?
# Were we really close? If so, don't change too much.
layer2_error = np.dot(cost_delta, cost_error)
layer2_delta = layer2_error *  sigmoid_derivative(layer2)

Правильно ли использовать точечное произведение на cost_delta и cost_error для layer2_error? Или layer2_error будет равно cost_delta?

т.е.

# How much did we miss in the predictions?
cost_error = mse(layer2, Y)
cost_delta = mse_derivative(layer2, Y)

#print(layer2_error)
# In what direction is the target value?
# Were we really close? If so, don't change too much.
layer2_error = cost_delta
layer2_delta = layer2_error *  sigmoid_derivative(layer2)

1 Ответ

0 голосов
/ 18 января 2019

Да, правильно умножать невязки (cost_error) на значения дельты при обновлении весов.

Однако, на самом деле не имеет значения, является ли точка продуктом или нет, поскольку cost_error является скаляром. Итак, простого умножения достаточно. Но мы определенно должны умножить градиент функции стоимости, потому что именно здесь мы начинаем наш backprop (т.е. это точка входа для обратного прохода).

Кроме того, нижеследующая функция может быть упрощена:

def mse(predicted, truth):
    return 0.5 * np.sum(np.square(predicted - truth)).mean()

в качестве * * +1010

def mse(predicted, truth):
    return 0.5 * np.mean(np.square(predicted - truth))
...