По крайней мере одна указанная метка должна быть в y_true - PullRequest
0 голосов
/ 10 сентября 2018

Я хочу получить матрицу путаницы в соответствии с y_test и pred_test, но поднимаю вопрос "По крайней мере, одна указанная метка должна быть в y_true", я не знаю, почему

metrics.confusion_matrix(np.argmax(y_test,axis=1),pred_test)


  y_test =  [[0. 1. 0. 0. 0. 0.]
     [0. 0. 0. 0. 0. 1.]
     [0. 0. 0. 0. 1. 0.]
     ...
     [0. 0. 0. 1. 0. 0.]
     [0. 0. 1. 0. 0. 0.]
     [0. 0. 1. 0. 0. 0.]]

   pred_test = [1 4 5 ... 3 2 2]
   np.argmax(y_test,axis=1) = [1 5 4 ... 3 2 2]

  File "D:\Anaconda\lib\site-packages\sklearn\metrics\classification.py", line 259, in confusion_matrix
    raise ValueError("At least one label specified must be in y_true")
ValueError: At least one label specified must be in y_true

Я создаю сверточную нейронную сеть. смоделируйте и используйте перекрестную проверку для оценки, наконец, сгенерируйте матрицу путаницы. В настоящее время возникают проблемы с генерацией путаницы.

Набор данных введите описание ссылки здесь . Полный код выглядит следующим образом:

 import matplotlib
    #matplotlib.use('Agg')
    import timing
    from keras.layers import Input,Dense,Conv2D,MaxPooling2D,UpSampling2D,Flatten
    from keras.models import Model
    from keras import backend as K
    from keras.utils.np_utils import to_categorical
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from keras.models import Sequential# 导入Sequential
    from keras.utils import np_utils, generic_utils
    from keras.callbacks import LearningRateScheduler
    import os
    from keras.layers import Dropout
    from keras.backend.tensorflow_backend import set_session
    import tensorflow as tf
    from sklearn.model_selection import train_test_split,  cross_val_score
    from sklearn.cross_validation import KFold, StratifiedKFold
    from keras.wrappers.scikit_learn import KerasClassifier
    from sklearn.preprocessing import LabelEncoder
    from sklearn import metrics
    import time
    from scipy import stats
    from keras import optimizers
    import matplotlib.pyplot as plt
    from keras import regularizers
    import keras
    from keras.callbacks import TensorBoard
    config = tf.ConfigProto(allow_soft_placement=True)
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    time1 = time.time()
    class LossHistory(keras.callbacks.Callback):
        def on_train_begin(self, logs={}):
            self.losses = {'batch':[], 'epoch':[]}
            self.accuracy = {'batch':[], 'epoch':[]}
            self.val_loss = {'batch':[], 'epoch':[]}
            self.val_acc = {'batch':[], 'epoch':[]}

        def on_batch_end(self, batch, logs={}):
            self.losses['batch'].append(logs.get('loss'))
            self.accuracy['batch'].append(logs.get('acc'))
            self.val_loss['batch'].append(logs.get('val_loss'))
            self.val_acc['batch'].append(logs.get('val_acc'))

        def on_epoch_end(self, batch, logs={}):
            self.losses['epoch'].append(logs.get('loss'))
            self.accuracy['epoch'].append(logs.get('acc'))
            self.val_loss['epoch'].append(logs.get('val_loss'))
            self.val_acc['epoch'].append(logs.get('val_acc'))

        def loss_plot(self, loss_type):
            iters = range(len(self.losses[loss_type]))
            plt.figure()
            # acc
            plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
            # loss
            plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
            if loss_type == 'epoch':
                # val_acc
                plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
                # val_loss
                plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
            plt.grid(True)
            plt.xlabel(loss_type)
            plt.ylabel('acc-loss')
            plt.legend(loc="center")
            plt.show()
            #plt.savefig('common.png')


    #dataset
    RANDOM_SEED = 42
    def read_data(file_path):
        column_names = ['user-id', 'activity', 'timestamp', 'x-axis', 'y-axis', 'z-axis']
        m = pd.read_csv(file_path,names=column_names, header=None,sep=',')
        return m
    def feature_normalize(dataset):
        mu = np.mean(dataset,axis=0)
        sigma = np.std(dataset,axis=0)
        return (dataset-mu)/sigma

    dataset1 = read_data('ab.txt')
    dataset = pd.DataFrame(dataset1)
    dataset['x-axis'] = feature_normalize(dataset['x-axis'])
    dataset['y-axis'] = feature_normalize(dataset['y-axis'])
    dataset['z-axis'] = feature_normalize(dataset['z-axis'])

    N_TIME_STEPS = 200
    N_FEATURES = 3
    step = 200
    segments = []
    labels = []
    for i in range(0, len(dataset) - N_TIME_STEPS, step):
        xs = dataset['x-axis'].values[i: i + N_TIME_STEPS]
        ys = dataset['y-axis'].values[i: i + N_TIME_STEPS]
        zs = dataset['z-axis'].values[i: i + N_TIME_STEPS]
        label = stats.mode(dataset['activity'][i: i + N_TIME_STEPS])[0][0]
        segments.append([xs, ys, zs])
        labels.append(label)
    print("reduced size of data", np.array(segments).shape)
    reshaped_segments = np.asarray(segments,dtype=np.float32).reshape(-1,1, N_TIME_STEPS, 3)
    print("Reshape the segments", np.array(reshaped_segments).shape)
    #x_train1, x_val_test, y_train1, y_val_test = train_test_split(reshaped_segments, labels, test_size=0.25, random_state=RANDOM_SEED)

    batch_size = 128     
    num_classes =6

    def create_model():
        input_shape = Input(shape=(1,200,3))
        x = Conv2D(5, kernel_size=(1, 1), padding='valid')(input_shape)
        x1 = keras.layers.concatenate([input_shape, x], axis=-1)

        x = Conv2D(50, kernel_size=(1, 7),padding='valid',
                     kernel_initializer='glorot_uniform',
        kernel_regularizer = keras.regularizers.l2(0.0015))(x1)


        x = keras.layers.core.Activation('relu')(x)
        x = MaxPooling2D(pool_size=(1, 2))(x)
        x = Conv2D(50, kernel_size=(1, 7),padding='valid',kernel_initializer='glorot_uniform',
               kernel_regularizer=keras.regularizers.l2(0.0015))(x)
        x = keras.layers.core.Activation('relu')(x)
        x = MaxPooling2D(pool_size=(1, 2))(x)

        x = Flatten()(x)
        x = Dropout(0.9)(x)
        output = Dense(num_classes, activation='softmax',kernel_initializer='glorot_uniform',)(x)
        model = Model(inputs=input_shape,outputs=output)
        model.summary()

        sgd = optimizers.SGD(lr=0.005,decay=1e-6,momentum=0.9,nesterov=True)
        model.compile(loss=keras.losses.categorical_crossentropy,
                  optimizer=sgd,
                  metrics=['accuracy'])
        return model
    history = LossHistory()
    epochs = 4000


    #setting learning rate
    def scheduler(epoch):
        if epoch > 0.75 * epochs:
            lr = 0.0005
        elif epoch > 0.25 * epochs:
            lr = 0.001
        else:
            lr = 0.005
        return lr

    scheduler = LearningRateScheduler(scheduler)
    estimator = KerasClassifier(build_fn=create_model)
    #divide dataset

    scores = []
    confusions = []   
    sign = ['DOWNSTAIRS','JOGGING','SITTING','STANDING','UPSTAIRS','WALKING']
    encoder = LabelEncoder()
    encoder_y = encoder.fit_transform(labels)
    train_labels = to_categorical(encoder_y,num_classes=None)

    #kfold = StratifiedKFold(reshaped_segments.shape[0],n_folds=10,shuffle=True,random_state=42)
    kfold = StratifiedKFold(labels,n_folds=3,shuffle=True,random_state=42)
    for train_index,test_index in kfold:
        print(test_index)
        x_train, x_test = reshaped_segments[train_index], reshaped_segments[test_index]
        y_train, y_test = train_labels[train_index], train_labels[test_index]
        estimator.fit(x_train,y_train,callbacks=[scheduler,history],epochs=10,batch_size=128,verbose=0)
        scores.append(estimator.score(x_test,y_test))
        print(y_test)
        print(type(y_test))
        pred_test = estimator.predict(x_test)  
        print(pred_test)
        print(np.argmax(y_test,axis=1))
        confusions.append(metrics.confusion_matrix(np.argmax(y_test,axis=1),pred_test,sign))

    matrix = [[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]

    for i in np.arange(n_folds-1):
        for j in len(confusions[0]):
            for k in len(confusions[0][0]):
                matrix[j][k] = matrix[j][k] + confusions[i][j][k] + confusions[i+1][j][k]  

    model.save('model.h5')  
    model.save_weights('my_model_weights.h5')
    print('score:',scores)
    scores = np.mean(scores)
    print('mean:',scores)

    plt.figure(figsize=(16,14))     
    sns.heatmap(matrix, xticklabels=sign, yticklabels=sign, annot=True, fmt="d");
    plt.title("CONFUSION MATRIX : ")
    plt.ylabel('True Label')
    plt.xlabel('Predicted label')
    plt.savefig('cmatrix.png')
    plt.show();

1 Ответ

0 голосов
/ 10 сентября 2018

Ошибка не в вашем основном коде, а в определении знака. Когда вы определяете знак как

 sign = ['DOWNSTAIRS','JOGGING','SITTING','STANDING','UPSTAIRS','WALKING']

система не может прочитать ваши метки, поскольку она ищет метки 0,1,2,3,4,5 как то, что пыталась сказать ошибка, т. Е. Она не могла найти никаких меток в знаке y_pred. изменение знака на

 sign = [1,2,3,4,5]

должен исправить ошибку. Что касается того, что вы делаете сейчас, то достаточно просто отобразить ваш результат как этот массив, а затем во время фактических прогнозов (развертывания) просто поменять числовые значения для меток.

...