Другой подход заключается в создании последовательного счетчика для столбцов ID_ed
, set_index
и unstack
перед вызовом pivot_table
.Агрегирование pivot_table
будет first
.Этот подход был бы очень похож на этот ответ SO
Генерация данных
import pandas as pd
import numpy as np
a = [['ID_ed','color'],[1,5],[2,8],[3,7]]
b = [['ID','code'],[1,1],[1,5],
[2,np.nan],[2,20],[2,74],
[3,10],[3,98],[3,85],
[3,21],[3,45]]
df1 = pd.DataFrame(a[1:], columns=a[0])
df2 = pd.DataFrame(b[1:], columns=b[0])
print(df1)
ID_ed color
0 1 5
1 2 8
2 3 7
print(df2)
ID code
0 1 1.0
1 1 5.0
2 2 NaN
3 2 20.0
4 2 74.0
5 3 10.0
6 3 98.0
7 3 85.0
8 3 21.0
9 3 45.0
Сначала слияние и разбор стека
# Merge and add a serial counter column
df = df1.merge(df2, how='inner', left_on='ID_ed', right_on='ID')
df['counter'] = df.groupby('ID_ed').cumcount()+1
print(df)
ID_ed color ID code counter
0 1 5 1 1.0 1
1 1 5 1 5.0 2
2 2 8 2 NaN 1
3 2 8 2 20.0 2
4 2 8 2 74.0 3
5 3 7 3 10.0 1
6 3 7 3 98.0 2
7 3 7 3 85.0 3
8 3 7 3 21.0 4
9 3 7 3 45.0 5
# Set index and unstack
df.set_index(['ID_ed','color','counter']).\
unstack().\
swaplevel(1,0,axis=1).\
sort_index(level=0,axis=1).add_prefix('counter_')
print(df)
counter counter_1 counter_2 \
counter_ID counter_code counter_ID counter_code\
ID_ed color \
1 5 1.0 1.0 1.0 5.0\
2 8 2.0 NaN 2.0 20.0\
3 7 3.0 10.0 3.0 98.0 \
counter_3 counter_4 counter_5
counter_ID counter_code counter_ID counter_code counter_ID counter_code
NaN NaN NaN NaN NaN NaN
2.0 74.0 NaN NaN NaN NaN
3.0 85.0 3.0 21.0 3.0 45.0
Следующее генерированиесводная таблица
# Pivot table with 'first' aggregation
dfp = pd.pivot_table(df, index=['ID_ed','color'],
columns=['counter'],
values=['ID', 'code'],
aggfunc='first')
print(dfp)
ID code
counter 1 2 3 4 5 1 2 3 4 5
ID_ed color
1 5 1.0 1.0 NaN NaN NaN 1.0 5.0 NaN NaN NaN
2 8 2.0 2.0 2.0 NaN NaN NaN 20.0 74.0 NaN NaN
3 7 3.0 3.0 3.0 3.0 3.0 10.0 98.0 85.0 21.0 45.0
Наконец, переименуйте столбцы и разделите на частичное имя столбца
# Rename columns
level_1_names = list(dfp.columns.get_level_values(1))
level_0_names = list(dfp.columns.get_level_values(0))
new_cnames = [b+'_'+str(f) for f, b in zip(level_1_names, level_0_names)]
dfp.columns = new_cnames
# Slice by new column names
print(dfp.loc[:, dfp.columns.str.contains('code')].reset_index(drop=False))
ID_ed color code_1 code_2 code_3 code_4 code_5
0 1 5 1.0 5.0 NaN NaN NaN
1 2 8 NaN 20.0 74.0 NaN NaN
2 3 7 10.0 98.0 85.0 21.0 45.0