Выполнение расчета с элементами объекта эластичного поиска json, оценки моста контракта с использованием Python - PullRequest
0 голосов
/ 24 декабря 2018

Данные здесь:

{'took': 0, 'timed_out': False, '_shards': {'total': 5, 'successful': 5, 'skipped': 0, 'failed': 0}, 'hits': {'total': 16, 'max_score': 1.0, 'hits': [{'_index': 'matchpoints', '_type': 'score', '_id': '6PKYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '1', 'nsp': '4', 'ewp': '11', 'contract': '3NT', 'by': 'N', 'tricks': '11', 'nsscore': '460', 'ewscore ': '0'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '7_KYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '2', 'nsp': '3', 'ewp': '10', 'contract': '3C', 'by': 'E', 'tricks': '10', 'nsscore': '-130', 'ewscore ': '130'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '6fKYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '1', 'nsp': '5', 'ewp': '12', 'contract': '3NT', 'by': 'S', 'tricks': '10', 'nsscore': '400', 'ewscore ': '0'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '8_KYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '2', 'nsp': '7', 'ewp': '14', 'contract': '3C', 'by': 'E', 'tricks': '10', 'nsscore': '-130', 'ewscore ': '130'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '9PKYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '2', 'nsp': '8', 'ewp': '15', 'contract': '3C', 'by': 'E', 'tricks': '11', 'nsscore': '-150', 'ewscore ': '150'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '5fKYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '1', 'nsp': '1', 'ewp': '16', 'contract': '3NT', 'by': 'N', 'tricks': '10', 'nsscore': '430', 'ewscore ': '0'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '6vKYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '1', 'nsp': '6', 'ewp': '13', 'contract': '4S', 'by': 'S', 'tricks': '11', 'nsscore': '480', 'ewscore ': '0'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '6_KYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '1', 'nsp': '7', 'ewp': '14', 'contract': '3NT', 'by': 'S', 'tricks': '8', 'nsscore': '-50', 'ewscore ': '50'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '7fKYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '2', 'nsp': '1', 'ewp': '16', 'contract': '6S', 'by': 'N', 'tricks': '12', 'nsscore': '1430', 'ewscore ': '0'}}, {'_index': 'matchpoints', '_type': 'score', '_id': '7vKYGGgBjpp4O0gQgUu5', '_score': 1.0, '_source': {'board_number': '2', 'nsp': '2', 'ewp': '9', 'contract': '3C', 'by': 'E', 'tricks': '10', 'nsscore': '-130', 'ewscore ': '130'}}]}}

Код Python, включающий последние изменения, выглядит следующим образом.В качестве моей промежуточной попытки не делается попытка перебрать разные доски.Эти данные просто производятся поиском по всему запросу.

@application.route('/', methods=['GET', 'POST'])
def index():
    search = {"query": {"match_all": {}}}
    resp = es.search(index="matchpoints", doc_type="score", body = search)
    rows = extract_rows(resp)
    for board in rows:
        scores = score_board(board)
        report(scores)
        print(report(scores))
    return 'ok'

def extract_rows(resp):                                                                                                          
    """Extract the rows for the board from the query response."""                                                                
    # Based on the data structure provided by the OP.                                                          
    rows = [row["_source"] for row in resp["hits"]["hits"]]
    # We want to return the group the data by board number
    # so that we can score each board.                                                                       
    keyfunc = lambda row: int(row['board_number'])                                                                               
    rows.sort(key=keyfunc)                                                                                                       
    for _, group in itertools.groupby(rows, keyfunc):                                                                            
        yield list(group)

def compute_mp(scores, score):
    """Compute the match point score for a pair."""
    mp_score = sum(v for k, v in scores.items() if score > k) * 2
    # The pair's own score will always compare equal - remove it.
    mp_score += sum(v for k, v in scores.items() if score == k) - 1
    return mp_score

def score_board(tables):
    """Build the scores for each pair."""
    scores = []
    top = 2 * (len(tables) - 1)
    # Store the scores for each N-S partnership.
    ns_scores = collections.Counter(int(table["nsscore"]) for table in tables)
    # Build the output for each pair.
    for table in tables:
        output = {
            "board": table["board_number"],
            "nsp": table["nsp"],
            "ewp": table["ewp"],
        }
        ns_score = int(table["nsscore"])
        ns_mp_score = compute_mp(ns_scores, ns_score)
        output["ns_mp_score"] = ns_mp_score
        ew_mp_score = top - ns_mp_score
        output["ew_mp_score"] = ew_mp_score
        scores.append(output)
    return scores

# Replace this function with one that adds the rows to
# the new search index
def report(scores):
    """Print the scores."""
    for row in scores:
        print(row)

, который, как и раньше, выдает правильный словарь, в котором оценка правильна, но имеется дублирование результатов и слишком много строк.Кроме того, есть два случая «Нет», и я не знаю, откуда это взялось.:

{'board': '1', 'nsp': '4', 'ewp': '11', 'ns_mp_score': 6, 'ew_mp_score': 2}
{'board': '1', 'nsp': '5', 'ewp': '12', 'ns_mp_score': 2, 'ew_mp_score': 6}
{'board': '1', 'nsp': '1', 'ewp': '16', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '1', 'nsp': '6', 'ewp': '13', 'ns_mp_score': 8, 'ew_mp_score': 0}
{'board': '1', 'nsp': '7', 'ewp': '14', 'ns_mp_score': 0, 'ew_mp_score': 8}
{'board': '1', 'nsp': '4', 'ewp': '11', 'ns_mp_score': 6, 'ew_mp_score': 2}
{'board': '1', 'nsp': '5', 'ewp': '12', 'ns_mp_score': 2, 'ew_mp_score': 6}
{'board': '1', 'nsp': '1', 'ewp': '16', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '1', 'nsp': '6', 'ewp': '13', 'ns_mp_score': 8, 'ew_mp_score': 0}
{'board': '1', 'nsp': '7', 'ewp': '14', 'ns_mp_score': 0, 'ew_mp_score': 8}
None
{'board': '2', 'nsp': '3', 'ewp': '10', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '2', 'nsp': '7', 'ewp': '14', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '2', 'nsp': '8', 'ewp': '15', 'ns_mp_score': 0, 'ew_mp_score': 8}
{'board': '2', 'nsp': '1', 'ewp': '16', 'ns_mp_score': 8, 'ew_mp_score': 0}
{'board': '2', 'nsp': '2', 'ewp': '9', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '2', 'nsp': '3', 'ewp': '10', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '2', 'nsp': '7', 'ewp': '14', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '2', 'nsp': '8', 'ewp': '15', 'ns_mp_score': 0, 'ew_mp_score': 8}
{'board': '2', 'nsp': '1', 'ewp': '16', 'ns_mp_score': 8, 'ew_mp_score': 0}
{'board': '2', 'nsp': '2', 'ewp': '9', 'ns_mp_score': 4, 'ew_mp_score': 4}
None

Оценка правильная, но, опять же, есть несколько случаев дублирования результатов одних и тех же пар.

Ответы [ 2 ]

0 голосов
/ 02 января 2019

Этот код будет рассчитывать баллы.Код довольно прост.

Вместо того, чтобы перебирать входной словарь для вычисления баллов для каждой пары, баллы Север-Юг хранятся в экземпляре collection.Counter , который ведет подсчет количества пар.это сделало каждый счет.Это облегчает вычисление баллов за матч для каждой пары - мы просто удваиваем количество сделанных более низких баллов и добавляем количество равных баллов, минус один, для учета баллов текущего партнерства.

import collections                                                                                                               
import itertools                                                                                                                                                                                                                                    


def extract_rows(resp):                                                                                                          
    """Extract the rows for the board from the query response."""                                                                
    # Based on the data structure provided by the OP.                                                          
    rows = [row["_source"] for row in resp["hits"]["hits"]]
    # We want to return the group the data by board number
    # so that we can score each board.                                                                       
    keyfunc = lambda row: int(row['board_number'])                                                                               
    rows.sort(key=keyfunc)                                                                                                       
    for _, group in itertools.groupby(rows, keyfunc):                                                                            
        yield list(group)


def compute_mp(scores, score):
    """Compute the match point score for a pair."""
    mp_score = sum(v for k, v in scores.items() if score > k) * 2
    # The pair's own score will always compare equal - remove it.
    mp_score += sum(v for k, v in scores.items() if score == k) - 1
    return mp_score


def score_board(tables):
    """Build the scores for each pair."""
    scores = []

    # Store the scores for each N-S partnership.
    ns_scores = collections.Counter(int(table["nsscore"]) for table in tables)
    # The top score is (2 * number of tables) - 2, then reduced by one for each 
    # equal top score.
    top = 2 * (len(tables) - 1) - (ns_scores[max(ns_scores)] - 1)
    # Build the output for each pair.
    for table in tables:
        output = {
            "board": table["board_number"],
            "nsp": table["nsp"],
            "ewp": table["ewp"],
        }
        ns_score = int(table["nsscore"])
        ns_mp_score = compute_mp(ns_scores, ns_score)
        output["ns_mp_score"] = ns_mp_score
        ew_mp_score = top - ns_mp_score
        output["ew_mp_score"] = ew_mp_score
        scores.append(output)
    return scores

# Replace this function with one that adds the rows to
# the new search index
def report(scores):
    """Print the scores."""
    for row in scores:
        print(row)

Запуск кода:

rows = extract_rows(resp)
scores = [score for rows in extract_rows(resp) for score in score_board(rows)]
report(scores)

Создает этот вывод:

{'board': '1', 'nsp': '4', 'ewp': '11', 'ns_mp_score': 6, 'ew_mp_score': 2}
{'board': '1', 'nsp': '5', 'ewp': '12', 'ns_mp_score': 2, 'ew_mp_score': 6}
{'board': '1', 'nsp': '1', 'ewp': '16', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '1', 'nsp': '6', 'ewp': '13', 'ns_mp_score': 8, 'ew_mp_score': 0}
{'board': '1', 'nsp': '7', 'ewp': '14', 'ns_mp_score': 0, 'ew_mp_score': 8}
{'board': '2', 'nsp': '3', 'ewp': '10', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '2', 'nsp': '7', 'ewp': '14', 'ns_mp_score': 4, 'ew_mp_score': 4}
{'board': '2', 'nsp': '8', 'ewp': '15', 'ns_mp_score': 0, 'ew_mp_score': 8}
{'board': '2', 'nsp': '1', 'ewp': '16', 'ns_mp_score': 8, 'ew_mp_score': 0}
{'board': '2', 'nsp': '2', 'ewp': '9', 'ns_mp_score': 4, 'ew_mp_score': 4}
0 голосов
/ 02 января 2019

Это НЕ моя работа, это работа "rvs", но так как это ответ, который я ищу, я опубликую его здесь, чтобы он мог помочь другим.

scores = {}
for row in arr["hits"]["hits"]:
  nsp = row["_source"]["nsp"]
  nsscore = row["_source"]["nsscore"]
  scores[nsp] = nsscore

input_scores = {}

def calculate_score(pair, scores):
    score = 0
    for p in scores:
        if p == pair:
            continue
        if scores[p] < scores[pair]:
            score += 2  # win
        elif scores[p] == scores[pair]:
            score += 1
    return score


board_num = arr["hits"]["total"]
top = (board_num - 1) * 2
result_score = {}
for row in arr["hits"]["hits"]:
  nsp = row["_source"]["nsp"]
  ewp = row["_source"]["ewp"]
  res = calculate_score(nsp, scores)
  ew_mp_score = top - res
  result_score.update({'nsp':nsp, 'ns_mp_score': res, 'ewp': ewp, 'ew_mp_score': ew_mp_score})
  print(result_score)

Спасибо.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...