C State-Design - PullRequest
       105

C State-Design

191 голосов
/ 30 октября 2009

Я занимаюсь созданием небольшого проекта на смешанных C и C ++. Я создаю один конечный автомат с маленьким размером в сердце одного из моих рабочих потоков.

Мне было интересно, если бы вы, гуру из SO, поделились своими методами проектирования конечных автоматов.

ПРИМЕЧАНИЕ: Я в основном после проверенных и проверенных методов реализации.

ОБНОВЛЕНО: Основываясь на всех замечательных материалах, собранных в SO, я остановился на этой архитектуре:

An event pump points to an event integrator which points to a dispatcher. The dispatcher points to 1 through n actions which point back to the event integrator. A transition table with wildcards points to the dispatcher.

Ответы [ 25 ]

1 голос
/ 28 июля 2015

Это старый пост с множеством ответов, но я подумал, что добавлю свой собственный подход к конечному автомату в C. Я создал скрипт Python, чтобы создать скелетный C-код для любого числа состояний. Этот сценарий задокументирован на GituHub по адресу FsmTemplateC

Этот пример основан на других подходах, о которых я читал. Он не использует операторы goto или switch, но вместо этого имеет функции перехода в матрице указателей (справочная таблица). Код опирается на большой многострочный макрос инициализатора и функции C99 (обозначенные инициализаторы и составные литералы), поэтому, если вам не нравятся эти вещи, вам может не понравиться этот подход.

Вот скрипт Python из примера турникета , который генерирует C-код скелета, используя FsmTemplateC :

# dict parameter for generating FSM
fsm_param = {
    # main FSM struct type string
    'type': 'FsmTurnstile',
    # struct type and name for passing data to state machine functions
    # by pointer (these custom names are optional)
    'fopts': {
        'type': 'FsmTurnstileFopts',
        'name': 'fopts'
    },
    # list of states
    'states': ['locked', 'unlocked'],
    # list of inputs (can be any length > 0)
    'inputs': ['coin', 'push'],
    # map inputs to commands (next desired state) using a transition table
    # index of array corresponds to 'inputs' array
    # for this example, index 0 is 'coin', index 1 is 'push'
    'transitiontable': {
        # current state |  'coin'  |  'push'  |
        'locked':       ['unlocked',        ''],
        'unlocked':     [        '',  'locked']
    }
}

# folder to contain generated code
folder = 'turnstile_example'
# function prefix
prefix = 'fsm_turnstile'

# generate FSM code
code = fsm.Fsm(fsm_param).genccode(folder, prefix)

Сгенерированный выходной заголовок содержит typedefs:

/* function options (EDIT) */
typedef struct FsmTurnstileFopts {
    /* define your options struct here */
} FsmTurnstileFopts;

/* transition check */
typedef enum eFsmTurnstileCheck {
    EFSM_TURNSTILE_TR_RETREAT,
    EFSM_TURNSTILE_TR_ADVANCE,
    EFSM_TURNSTILE_TR_CONTINUE,
    EFSM_TURNSTILE_TR_BADINPUT
} eFsmTurnstileCheck;

/* states (enum) */
typedef enum eFsmTurnstileState {
    EFSM_TURNSTILE_ST_LOCKED,
    EFSM_TURNSTILE_ST_UNLOCKED,
    EFSM_TURNSTILE_NUM_STATES
} eFsmTurnstileState;

/* inputs (enum) */
typedef enum eFsmTurnstileInput {
    EFSM_TURNSTILE_IN_COIN,
    EFSM_TURNSTILE_IN_PUSH,
    EFSM_TURNSTILE_NUM_INPUTS,
    EFSM_TURNSTILE_NOINPUT
} eFsmTurnstileInput;

/* finite state machine struct */
typedef struct FsmTurnstile {
    eFsmTurnstileInput input;
    eFsmTurnstileCheck check;
    eFsmTurnstileState cur;
    eFsmTurnstileState cmd;
    eFsmTurnstileState **transition_table;
    void (***state_transitions)(struct FsmTurnstile *, FsmTurnstileFopts *);
    void (*run)(struct FsmTurnstile *, FsmTurnstileFopts *, const eFsmTurnstileInput);
} FsmTurnstile;

/* transition functions */
typedef void (*pFsmTurnstileStateTransitions)(struct FsmTurnstile *, FsmTurnstileFopts *);
  • enum eFsmTurnstileCheck используется для определения, был ли переход заблокирован с помощью EFSM_TURNSTILE_TR_RETREAT, разрешен ли прогресс с EFSM_TURNSTILE_TR_ADVANCE, или вызову функции не предшествовал переход с EFSM_TURNSTILE_TR_CONTINUE.
  • enum eFsmTurnstileState - это просто список состояний.
  • enum eFsmTurnstileInput - это просто список входных данных.
  • Структура FsmTurnstile является сердцем конечного автомата с проверкой перехода, таблицей поиска функций, текущим состоянием, заданным состоянием и псевдонимом основной функции, которая запускает машину.
  • Каждый указатель функции (псевдоним) в FsmTurnstile должен вызываться только из структуры и должен иметь свой первый вход в качестве указателя на себя, чтобы поддерживать постоянное состояние, объектно-ориентированный стиль.

Теперь для объявлений функций в заголовке:

/* fsm declarations */
void fsm_turnstile_locked_locked (FsmTurnstile *fsm, FsmTurnstileFopts *fopts);
void fsm_turnstile_locked_unlocked (FsmTurnstile *fsm, FsmTurnstileFopts *fopts);
void fsm_turnstile_unlocked_locked (FsmTurnstile *fsm, FsmTurnstileFopts *fopts);
void fsm_turnstile_unlocked_unlocked (FsmTurnstile *fsm, FsmTurnstileFopts *fopts);
void fsm_turnstile_run (FsmTurnstile *fsm, FsmTurnstileFopts *fopts, const eFsmTurnstileInput input);

Имена функций имеют формат {prefix}_{from}_{to}, где {from} - предыдущее (текущее) состояние, а {to} - следующее состояние. Обратите внимание, что если таблица переходов не допускает определенные переходы, вместо указателя функции будет установлен указатель NULL. Наконец, магия случается с макросом. Здесь мы строим таблицу переходов (матрицу перечислений состояний) и таблицу поиска функций перехода состояний (матрицу указателей функций):

/* creation macro */
#define FSM_TURNSTILE_CREATE() \
{ \
    .input = EFSM_TURNSTILE_NOINPUT, \
    .check = EFSM_TURNSTILE_TR_CONTINUE, \
    .cur = EFSM_TURNSTILE_ST_LOCKED, \
    .cmd = EFSM_TURNSTILE_ST_LOCKED, \
    .transition_table = (eFsmTurnstileState * [EFSM_TURNSTILE_NUM_STATES]) { \
        (eFsmTurnstileState [EFSM_TURNSTILE_NUM_INPUTS]) { \
            EFSM_TURNSTILE_ST_UNLOCKED, \
            EFSM_TURNSTILE_ST_LOCKED \
        }, \
        (eFsmTurnstileState [EFSM_TURNSTILE_NUM_INPUTS]) { \
            EFSM_TURNSTILE_ST_UNLOCKED, \
            EFSM_TURNSTILE_ST_LOCKED \
        } \
    }, \
    .state_transitions = (pFsmTurnstileStateTransitions * [EFSM_TURNSTILE_NUM_STATES]) { \
        (pFsmTurnstileStateTransitions [EFSM_TURNSTILE_NUM_STATES]) { \
            fsm_turnstile_locked_locked, \
            fsm_turnstile_locked_unlocked \
        }, \
        (pFsmTurnstileStateTransitions [EFSM_TURNSTILE_NUM_STATES]) { \
            fsm_turnstile_unlocked_locked, \
            fsm_turnstile_unlocked_unlocked \
        } \
    }, \
    .run = fsm_turnstile_run \
}

При создании автомата должен использоваться макрос FSM_EXAMPLE_CREATE().

Теперь в исходном коде должна быть заполнена каждая объявленная выше функция перехода состояния. Структура FsmTurnstileFopts может использоваться для передачи данных в / из конечного автомата. Каждый переход должен установить fsm->check равным либо EFSM_EXAMPLE_TR_RETREAT, чтобы заблокировать его переход, либо EFSM_EXAMPLE_TR_ADVANCE, чтобы позволить ему перейти в заданное состояние. Рабочий пример можно найти по адресу (FsmTemplateC) [https://github.com/ChisholmKyle/FsmTemplateC].

Вот очень простое фактическое использование в вашем коде:

/* create fsm */
FsmTurnstile fsm = FSM_TURNSTILE_CREATE();
/* create fopts */
FsmTurnstileFopts fopts = {
    .msg = ""
};
/* initialize input */
eFsmTurnstileInput input = EFSM_TURNSTILE_NOINPUT;

/* main loop */
for (;;) {
    /* wait for timer signal, inputs, interrupts, whatever */
    /* optionally set the input (my_input = EFSM_TURNSTILE_IN_PUSH for example) */
    /* run state machine */
    my_fsm.run(&my_fsm, &my_fopts, my_input);
}

Весь этот бизнес заголовков и все эти функции только для того, чтобы иметь простой и быстрый интерфейс, стоит того, чтобы я подумал.

0 голосов
/ 15 апреля 2019

Вот пример конечного автомата для Linux, который использует очереди сообщений в качестве событий. События помещаются в очередь и обрабатываются по порядку. Состояние меняется в зависимости от того, что происходит для каждого события.

Это пример подключения к данным с такими состояниями, как:

  • UNINITIALIZED
  • инициализирован
  • Connected
  • MTU Договорная
  • Заверенные

Одна небольшая дополнительная функция, которую я добавил, была отметка времени для каждого сообщения / события. Обработчик событий будет игнорировать слишком старые события (срок их действия истек). Это может часто случаться в реальном мире, где вы можете неожиданно застрять в состоянии.

Этот пример работает в Linux, используйте Makefile ниже, чтобы скомпилировать его и поиграть с ним.

state_machine.c

#include <stdio.h>
#include <stdint.h>
#include <assert.h>
#include <unistd.h>   // sysconf()
#include <errno.h>    // errno
#include <string.h>   // strerror()
#include <sys/time.h> // gettimeofday()
#include <fcntl.h>    // For O_* constants
#include <sys/stat.h> // For mode constants

#include <mqueue.h>
#include <poll.h>

//------------------------------------------------
// States
//------------------------------------------------
typedef enum
{
    ST_UNKNOWN = 0,
    ST_UNINIT,
    ST_INIT,
    ST_CONNECTED,
    ST_MTU_NEGOTIATED,
    ST_AUTHENTICATED,
    ST_ERROR,
    ST_DONT_CHANGE,
    ST_TERM,
} fsmState_t;

//------------------------------------------------
// Events
//------------------------------------------------
typedef enum
{
    EV_UNKNOWN = 0,
    EV_INIT_SUCCESS,
    EV_INIT_FAIL,
    EV_MASTER_CMD_MSG,
    EV_CONNECT_SUCCESS,
    EV_CONNECT_FAIL,
    EV_MTU_SUCCESS,
    EV_MTU_FAIL,
    EV_AUTH_SUCCESS,
    EV_AUTH_FAIL,
    EV_TX_SUCCESS,
    EV_TX_FAIL,
    EV_DISCONNECTED,
    EV_DISCON_FAILED,
    EV_LAST_ENTRY,
} fsmEvName_t;

typedef struct fsmEvent_type
{
    fsmEvName_t name;
    struct timeval genTime; // Time the event was generated.
                            // This allows us to see how old the event is.
} fsmEvent_t;

// Finite State Machine Data Members
typedef struct fsmData_type
{
    int  connectTries;
    int  MTUtries;
    int  authTries;
    int  txTries;
} fsmData_t;

// Each row of the state table
typedef struct stateTable_type {
    fsmState_t  st;             // Current state
    fsmEvName_t evName;         // Got this event
    int (*conditionfn)(void *);  // If this condition func returns TRUE
    fsmState_t nextState;       // Change to this state and
    void (*fn)(void *);          // Run this function
} stateTable_t;

// Finite State Machine state structure
typedef struct fsm_type
{
    const stateTable_t *pStateTable; // Pointer to state table
    int        numStates;            // Number of entries in the table
    fsmState_t currentState;         // Current state
    fsmEvent_t currentEvent;         // Current event
    fsmData_t *fsmData;              // Pointer to the data attributes
    mqd_t      mqdes;                // Message Queue descriptor
    mqd_t      master_cmd_mqdes;     // Master command message queue
} fsm_t;

// Wildcard events and wildcard state
#define   EV_ANY    -1
#define   ST_ANY    -1
#define   TRUE     (1)
#define   FALSE    (0)

// Maximum priority for message queues (see "man mq_overview")
#define FSM_PRIO  (sysconf(_SC_MQ_PRIO_MAX) - 1)

static void addev                              (fsm_t *fsm, fsmEvName_t ev);
static void doNothing                          (void *fsm) {addev(fsm, EV_MASTER_CMD_MSG);}
static void doInit                             (void *fsm) {addev(fsm, EV_INIT_SUCCESS);}
static void doConnect                          (void *fsm) {addev(fsm, EV_CONNECT_SUCCESS);}
static void doMTU                              (void *fsm) {addev(fsm, EV_MTU_SUCCESS);}
static void reportFailConnect                  (void *fsm) {addev(fsm, EV_ANY);}
static void doAuth                             (void *fsm) {addev(fsm, EV_AUTH_SUCCESS);}
static void reportDisConnect                   (void *fsm) {addev(fsm, EV_ANY);}
static void doDisconnect                       (void *fsm) {addev(fsm, EV_ANY);}
static void doTransaction                      (void *fsm) {addev(fsm, EV_TX_FAIL);}
static void fsmError                           (void *fsm) {addev(fsm, EV_ANY);}

static int currentlyLessThanMaxConnectTries    (void *fsm) {
    fsm_t *l = (fsm_t *)fsm;
    return (l->fsmData->connectTries < 5 ? TRUE : FALSE);
}
static int        isMoreThanMaxConnectTries    (void *fsm) {return TRUE;}
static int currentlyLessThanMaxMTUtries        (void *fsm) {return TRUE;}
static int        isMoreThanMaxMTUtries        (void *fsm) {return TRUE;}
static int currentyLessThanMaxAuthTries        (void *fsm) {return TRUE;}
static int       isMoreThanMaxAuthTries        (void *fsm) {return TRUE;}
static int currentlyLessThanMaxTXtries         (void *fsm) {return FALSE;}
static int        isMoreThanMaxTXtries         (void *fsm) {return TRUE;}
static int didNotSelfDisconnect                (void *fsm) {return TRUE;}

static int  waitForEvent                       (fsm_t *fsm);
static void runEvent                           (fsm_t *fsm);
static void runStateMachine(fsm_t *fsm);
static int newEventIsValid(fsmEvent_t *event);
static void getTime(struct timeval *time);
void printState(fsmState_t st);
void printEvent(fsmEvName_t ev);

// Global State Table
const stateTable_t GST[] = {
    // Current state         Got this event          If this condition func returns TRUE     Change to this state and    Run this function
    { ST_UNINIT,             EV_INIT_SUCCESS,        NULL,                                   ST_INIT,                    &doNothing              },
    { ST_UNINIT,             EV_INIT_FAIL,           NULL,                                   ST_UNINIT,                  &doInit                 },
    { ST_INIT,               EV_MASTER_CMD_MSG,      NULL,                                   ST_INIT,                    &doConnect              },
    { ST_INIT,               EV_CONNECT_SUCCESS,     NULL,                                   ST_CONNECTED,               &doMTU                  },
    { ST_INIT,               EV_CONNECT_FAIL,        &currentlyLessThanMaxConnectTries,      ST_INIT,                    &doConnect              },
    { ST_INIT,               EV_CONNECT_FAIL,        &isMoreThanMaxConnectTries,             ST_INIT,                    &reportFailConnect      },
    { ST_CONNECTED,          EV_MTU_SUCCESS,         NULL,                                   ST_MTU_NEGOTIATED,          &doAuth                 },
    { ST_CONNECTED,          EV_MTU_FAIL,            &currentlyLessThanMaxMTUtries,          ST_CONNECTED,               &doMTU                  },
    { ST_CONNECTED,          EV_MTU_FAIL,            &isMoreThanMaxMTUtries,                 ST_CONNECTED,               &doDisconnect           },
    { ST_CONNECTED,          EV_DISCONNECTED,        &didNotSelfDisconnect,                  ST_INIT,                    &reportDisConnect       },
    { ST_MTU_NEGOTIATED,     EV_AUTH_SUCCESS,        NULL,                                   ST_AUTHENTICATED,           &doTransaction          },
    { ST_MTU_NEGOTIATED,     EV_AUTH_FAIL,           &currentyLessThanMaxAuthTries,          ST_MTU_NEGOTIATED,          &doAuth                 },
    { ST_MTU_NEGOTIATED,     EV_AUTH_FAIL,           &isMoreThanMaxAuthTries,                ST_MTU_NEGOTIATED,          &doDisconnect           },
    { ST_MTU_NEGOTIATED,     EV_DISCONNECTED,        &didNotSelfDisconnect,                  ST_INIT,                    &reportDisConnect       },
    { ST_AUTHENTICATED,      EV_TX_SUCCESS,          NULL,                                   ST_AUTHENTICATED,           &doDisconnect           },
    { ST_AUTHENTICATED,      EV_TX_FAIL,             &currentlyLessThanMaxTXtries,           ST_AUTHENTICATED,           &doTransaction          },
    { ST_AUTHENTICATED,      EV_TX_FAIL,             &isMoreThanMaxTXtries,                  ST_AUTHENTICATED,           &doDisconnect           },
    { ST_AUTHENTICATED,      EV_DISCONNECTED,        &didNotSelfDisconnect,                  ST_INIT,                    &reportDisConnect       },
    { ST_ANY,                EV_DISCON_FAILED,       NULL,                                   ST_DONT_CHANGE,             &doDisconnect           },
    { ST_ANY,                EV_ANY,                 NULL,                                   ST_UNINIT,                  &fsmError               }    // Wildcard state for errors
};

#define GST_COUNT (sizeof(GST)/sizeof(stateTable_t))

int main()
{
    int ret = 0;
    fsmData_t dataAttr;
    dataAttr.connectTries = 0;
    dataAttr.MTUtries     = 0;
    dataAttr.authTries    = 0;
    dataAttr.txTries      = 0;

    fsm_t lfsm;
    memset(&lfsm, 0, sizeof(fsm_t));
    lfsm.pStateTable       = GST;
    lfsm.numStates         = GST_COUNT;
    lfsm.currentState      = ST_UNINIT;
    lfsm.currentEvent.name = EV_ANY;
    lfsm.fsmData           = &dataAttr;

    struct mq_attr attr;
    attr.mq_maxmsg = 30;
    attr.mq_msgsize = sizeof(fsmEvent_t);

    // Dev info
    //printf("Size of fsmEvent_t [%ld]\n", sizeof(fsmEvent_t));

    ret = mq_unlink("/abcmq");
    if (ret == -1) {
        fprintf(stderr, "Error on mq_unlink(), errno[%d] strerror[%s]\n",
                errno, strerror(errno));
    }

    lfsm.mqdes = mq_open("/abcmq", O_CREAT | O_RDWR, S_IWUSR | S_IRUSR, &attr);
    if (lfsm.mqdes == (mqd_t)-1) {
        fprintf(stderr, "Error on mq_open(), errno[%d] strerror[%s]\n",
                errno, strerror(errno));
        return -1;
    }

    doInit(&lfsm);  // This will generate the first event
    runStateMachine(&lfsm);

    return 0;
}


static void runStateMachine(fsm_t *fsm)
{
    int ret = 0;

    if (fsm == NULL) {
        fprintf(stderr, "[%s] NULL argument\n", __func__);
        return;
    }

    // Cycle through the state machine
    while (fsm->currentState != ST_TERM) {
        printf("current state [");
        printState(fsm->currentState);
        printf("]\n");

        ret = waitForEvent(fsm);
        if (ret == 0) {
            printf("got event [");
            printEvent(fsm->currentEvent.name);
            printf("]\n");

            runEvent(fsm);
        }
        sleep(2);
    }
}


static int waitForEvent(fsm_t *fsm)
{
    //const int numFds = 2;
    const int numFds = 1;
    struct pollfd fds[numFds];
    int timeout_msecs = -1; // -1 is forever
    int ret = 0;
    int i = 0;
    ssize_t num = 0;
    fsmEvent_t newEv;

    if (fsm == NULL) {
        fprintf(stderr, "[%s] NULL argument\n", __func__);
        return -1;
    }

    fsm->currentEvent.name = EV_ANY;

    fds[0].fd     = fsm->mqdes;
    fds[0].events = POLLIN;
    //fds[1].fd     = fsm->master_cmd_mqdes;
    //fds[1].events = POLLIN;
    ret = poll(fds, numFds, timeout_msecs);

    if (ret > 0) {
        // An event on one of the fds has occurred
        for (i = 0; i < numFds; i++) {
            if (fds[i].revents & POLLIN) {
                // Data may be read on device number i
                num = mq_receive(fds[i].fd, (void *)(&newEv),
                                 sizeof(fsmEvent_t), NULL);
                if (num == -1) {
                    fprintf(stderr, "Error on mq_receive(), errno[%d] "
                            "strerror[%s]\n", errno, strerror(errno));
                    return -1;
                }

                if (newEventIsValid(&newEv)) {
                    fsm->currentEvent = newEv;
                } else {
                    return -1;
                }
            }
        }
    } else {
        fprintf(stderr, "Error on poll(), ret[%d] errno[%d] strerror[%s]\n",
                ret, errno, strerror(errno));
        return -1;
    }

    return 0;
}


static int newEventIsValid(fsmEvent_t *event)
{
    if (event == NULL) {
        fprintf(stderr, "[%s] NULL argument\n", __func__);
        return FALSE;
    }

    printf("[%s]\n", __func__);

    struct timeval now;
    getTime(&now);

    if ( (event->name < EV_LAST_ENTRY) &&
         ((now.tv_sec - event->genTime.tv_sec) < (60*5))
       )
    {
        return TRUE;
    } else {
        return FALSE;
    }
}


//------------------------------------------------
// Performs event handling on the FSM (finite state machine).
// Make sure there is a wildcard state at the end of
// your table, otherwise; the event will be ignored.
//------------------------------------------------
static void runEvent(fsm_t *fsm)
{
    int i;
    int condRet = 0;

    if (fsm == NULL) {
        fprintf(stderr, "[%s] NULL argument\n", __func__);
        return;
    }

    printf("[%s]\n", __func__);

    // Find a relevant entry for this state and event
    for (i = 0; i < fsm->numStates; i++) {
        // Look in the table for our current state or ST_ANY
        if (  (fsm->pStateTable[i].st == fsm->currentState) ||
              (fsm->pStateTable[i].st == ST_ANY)
           )
        {
            // Is this the event we are looking for?
            if ( (fsm->pStateTable[i].evName == fsm->currentEvent.name) ||
                 (fsm->pStateTable[i].evName == EV_ANY)
               )
            {
                if (fsm->pStateTable[i].conditionfn != NULL) {
                    condRet = fsm->pStateTable[i].conditionfn(fsm->fsmData);
                }

                // See if there is a condition associated
                // or we are not looking for any condition
                //
                if ( (condRet != 0) || (fsm->pStateTable[i].conditionfn == NULL))
                {
                    // Set the next state (if applicable)
                    if (fsm->pStateTable[i].nextState != ST_DONT_CHANGE) {
                        fsm->currentState = fsm->pStateTable[i].nextState;
                        printf("new state [");
                        printState(fsm->currentState);
                        printf("]\n");
                    }

                    // Call the state callback function
                    fsm->pStateTable[i].fn(fsm);
                    break;
                }
            }
        }
    }
}


//------------------------------------------------
//               EVENT HANDLERS
//------------------------------------------------
static void getTime(struct timeval *time)
{
    if (time == NULL) {
        fprintf(stderr, "[%s] NULL argument\n", __func__);
        return;
    }

    printf("[%s]\n", __func__);

    int ret = gettimeofday(time, NULL);
    if (ret != 0) {
        fprintf(stderr, "gettimeofday() failed: errno [%d], strerror [%s]\n",
                errno, strerror(errno));
        memset(time, 0, sizeof(struct timeval));
    }
}


static void addev (fsm_t *fsm, fsmEvName_t ev)
{
    int ret = 0;

    if (fsm == NULL) {
        fprintf(stderr, "[%s] NULL argument\n", __func__);
        return;
    }

    printf("[%s] ev[%d]\n", __func__, ev);

    if (ev == EV_ANY) {
        // Don't generate a new event, just return...
        return;
    }

    fsmEvent_t newev;
    getTime(&(newev.genTime));
    newev.name = ev;

    ret = mq_send(fsm->mqdes, (void *)(&newev), sizeof(fsmEvent_t), FSM_PRIO);
    if (ret == -1) {
        fprintf(stderr, "[%s] mq_send() failed: errno [%d], strerror [%s]\n",
                __func__, errno, strerror(errno));
    }
}
//------------------------------------------------
//           end EVENT HANDLERS
//------------------------------------------------

void printState(fsmState_t st)
{
    switch(st) {
        case    ST_UNKNOWN:
        printf("ST_UNKNOWN");
            break;
        case    ST_UNINIT:
        printf("ST_UNINIT");
            break;
        case    ST_INIT:
        printf("ST_INIT");
            break;
        case    ST_CONNECTED:
        printf("ST_CONNECTED");
            break;
        case    ST_MTU_NEGOTIATED:
        printf("ST_MTU_NEGOTIATED");
            break;
        case    ST_AUTHENTICATED:
        printf("ST_AUTHENTICATED");
            break;
        case    ST_ERROR:
        printf("ST_ERROR");
            break;
        case    ST_TERM:
        printf("ST_TERM");
            break;
        default:
        printf("unknown state");
            break;
    }
}

void printEvent(fsmEvName_t ev)
{
    switch (ev) {
        case    EV_UNKNOWN:
        printf("EV_UNKNOWN");
            break;
        case    EV_INIT_SUCCESS:
        printf("EV_INIT_SUCCESS");
            break;
        case    EV_INIT_FAIL:
        printf("EV_INIT_FAIL");
            break;
        case    EV_MASTER_CMD_MSG:
        printf("EV_MASTER_CMD_MSG");
            break;
        case    EV_CONNECT_SUCCESS:
        printf("EV_CONNECT_SUCCESS");
            break;
        case    EV_CONNECT_FAIL:
        printf("EV_CONNECT_FAIL");
            break;
        case    EV_MTU_SUCCESS:
        printf("EV_MTU_SUCCESS");
            break;
        case    EV_MTU_FAIL:
        printf("EV_MTU_FAIL");
            break;
        case    EV_AUTH_SUCCESS:
        printf("EV_AUTH_SUCCESS");
            break;
        case    EV_AUTH_FAIL:
        printf("EV_AUTH_FAIL");
            break;
        case    EV_TX_SUCCESS:
        printf("EV_TX_SUCCESS");
            break;
        case    EV_TX_FAIL:
        printf("EV_TX_FAIL");
            break;
        case    EV_DISCONNECTED:
        printf("EV_DISCONNECTED");
            break;
        case    EV_LAST_ENTRY:
        printf("EV_LAST_ENTRY");
            break;
        default:
        printf("unknown event");
            break;
    }
}

Makefile

CXX = gcc
COMPFLAGS = -c -Wall -g

state_machine: state_machine.o
    $(CXX) -lrt state_machine.o -o state_machine

state_machine.o: state_machine.c
    $(CXX) $(COMPFLAGS) state_machine.c

clean:
    rm state_machine state_machine.o
0 голосов
/ 13 декабря 2016

Я лично использую самоссылающиеся структуры в сочетании с массивами указателей. Некоторое время назад я загрузил учебник на github, ссылка:

https://github.com/mmelchger/polling_state_machine_c

Примечание: я понимаю, что этот поток довольно старый, но я надеюсь получить информацию и соображения по поводу дизайна конечного автомата, а также предоставить пример возможного проекта конечного автомата в C.

0 голосов
/ 30 января 2016
void (* StateController)(void); 
void state1(void);
void state2(void);

void main()
{
 StateController=&state1;
 while(1)
 {
  (* StateController)();
 }
}

void state1(void)
{
 //do something in state1
 StateController=&state2;
}

void state2(void)
{
 //do something in state2
 //Keep changing function direction based on state transition
 StateController=&state1;
}
0 голосов
/ 24 января 2012

Вы можете использовать библиотеку с открытым исходным кодом OpenFST .

OpenFst - это библиотека для конструирования, объединения, оптимизации и поиска весовых преобразователей в конечных состояниях (FST). Взвешенные конечные преобразователи представляют собой автоматы, в которых каждый переход имеет входную метку, выходную метку и вес. Более знакомый конечный акцептор представлен в виде преобразователя с метками входа и выхода каждого перехода. Акцепторы конечного состояния используются для представления наборов строк (в частности, регулярных или рациональных наборов); преобразователи конечного состояния используются для представления бинарных отношений между парами строк (в частности, рациональных преобразований). Веса могут использоваться для представления стоимости выполнения определенного перехода.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...