Tensorflow - ValueError: Не удалось преобразовать массив NumPy в Tensor (неподдерживаемый тип объекта float) - PullRequest
2 голосов
/ 31 октября 2019

Продолжение предыдущего вопроса: Tensorflow - TypeError: объект 'int' не повторяется

Мои тренировочные данные представляют собой список списков, каждый из которых состоит из 1000 чисел с плавающей запятой. Например, x_train[0] =

[0.0, 0.0, 0.1, 0.25, 0.5, ...]

Вот моя модель:

model = Sequential()

model.add(LSTM(128, activation='relu',
               input_shape=(1000, 1), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))

opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))

Вот ошибка, которую я получаю:

Traceback (most recent call last):
      File "C:\Users\bencu\Desktop\ProjectFiles\Code\Program.py", line 88, in FitModel
        model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 728, in fit
        use_multiprocessing=use_multiprocessing)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 224, in fit
        distribution_strategy=strategy)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 547, in _process_training_inputs
        use_multiprocessing=use_multiprocessing)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 606, in _process_inputs
        use_multiprocessing=use_multiprocessing)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 479, in __init__
        batch_size=batch_size, shuffle=shuffle, **kwargs)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 321, in __init__
        dataset_ops.DatasetV2.from_tensors(inputs).repeat()
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 414, in from_tensors
        return TensorDataset(tensors)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 2335, in __init__
        element = structure.normalize_element(element)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\util\structure.py", line 111, in normalize_element
        ops.convert_to_tensor(t, name="component_%d" % i))
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1184, in convert_to_tensor
        return convert_to_tensor_v2(value, dtype, preferred_dtype, name)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1242, in convert_to_tensor_v2
        as_ref=False)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1296, in internal_convert_to_tensor
        ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\tensor_conversion_registry.py", line 52, in _default_conversion_function
        return constant_op.constant(value, dtype, name=name)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 227, in constant
        allow_broadcast=True)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 235, in _constant_impl
        t = convert_to_eager_tensor(value, ctx, dtype)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 96, in convert_to_eager_tensor
        return ops.EagerTensor(value, ctx.device_name, dtype)
    ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type float).

У меня естьсам попробовал погуглить ошибку, я нашел кое-что об использовании функции tf.convert_to_tensor. Я попытался передать свои списки тренировок и испытаний через это, но функция их не берет.

Любая помощь будет высоко ценится. Благодаря.

1 Ответ

1 голос
/ 02 ноября 2019

Проблема коренится в использовании списков в качестве входных данных, в отличие от массивов Numpy;Keras / TF не поддерживает прежний. Простое преобразование: x_array = np.asarray(x_list).

Следующий шаг для обеспечения подачи данных в ожидаемом формате;для LSTM это будет трехмерный тензор с размерами (batch_size, timesteps, features) - или, что эквивалентно, (num_samples, timesteps, channels). Наконец, в качестве подсказки для отладки, выведите ВСЕ формы для ваших данных. Код, выполняющий все вышеперечисленное, ниже:

Sequences = np.asarray(Sequences)
Targets   = np.asarray(Targets)
show_shapes()

Sequences = np.expand_dims(Sequences, -1)
Targets   = np.expand_dims(Targets, -1)
show_shapes()
# OUTPUTS
Expected: (num_samples, timesteps, channels)
Sequences: (200, 1000)
Targets:   (200,)

Expected: (num_samples, timesteps, channels)
Sequences: (200, 1000, 1)
Targets:   (200, 1)

В качестве бонуса, я замечаю, что вы используете main(), поэтому в вашей IDE, вероятно, отсутствует ячейка, похожая на Jupyter. исполнение на основе;Я настоятельно рекомендую Spyder IDE . Это просто, добавив # In[] и нажав Ctrl + Enter ниже:

image


Используемая функция :

def show_shapes(): # can make yours to take inputs; this'll use local variable values
    print("Expected: (num_samples, timesteps, channels)")
    print("Sequences: {}".format(Sequences.shape))
    print("Targets:   {}".format(Targets.shape))   
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...