имеют следующий фрейм данных:
token name ltp change
0 12345.0 abc 2.0 NaN
1 12345.0 abc 5.0 1.500000
2 12345.0 abc 3.0 -0.400000
3 12345.0 abc 9.0 2.000000
4 12345.0 abc 5.0 -0.444444
5 12345.0 abc 16.0 2.200000
6 6789.0 xyz 1.0 NaN
7 6789.0 xyz 5.0 4.000000
8 6789.0 xyz 3.0 -0.400000
9 6789.0 xyz 13.0 3.333333
10 6789.0 xyz 9.0 -0.307692
11 6789.0 xyz 20.0 1.222222
Мне нужно подсчитать положительное и отрицательное число для каждой категории столбца имени. в приведенном выше примере
abc:pos_count: 3 abc:neg_count:2
xyz:pos_count:2 xyz:neg_count:2
count=df.groupby('name')['change'].count()
count
, однако это дает мне только общее количество по группам, но не положительное и отрицательное количество по отдельности.