Самый быстрый способ перечислить все простые числа ниже N - PullRequest
338 голосов
/ 15 января 2010

Это лучший алгоритм, который я мог придумать.

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

Можно ли сделать это еще быстрее?

Этот код имеет недостаток: поскольку numbers является неупорядоченным набором, нет гарантии, что numbers.pop() удалит самый низкий номер из набора. Тем не менее, это работает (по крайней мере для меня) для некоторых входных чисел:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

Ответы [ 31 ]

348 голосов
/ 15 января 2010

Предупреждение: timeit результаты могут отличаться из-за различий в оборудовании или версия Python.

Ниже приведен скрипт, который сравнивает ряд реализаций:

Большое спасибо stephan за то, что привлекли мое внимание к sieve_wheel_30. Начисление Роберту Уильяму Хэнксу для простых чисел от 2 до, простых чисел от 3 до, rwh_primes, rwh_primes1 и rwh_primes2.

Из простых протестированных методов Python, с psyco , для n = 1000000, rwh_primes1 был протестирован быстрее всех.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes1         | 43.0  |
| sieveOfAtkin        | 46.4  |
| rwh_primes          | 57.4  |
| sieve_wheel_30      | 63.0  |
| rwh_primes2         | 67.8  |    
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain    | 152.0 |
| sundaram3           | 194.0 |
+---------------------+-------+

Из простых протестированных методов Python, без psyco , для n = 1000000, rwh_primes2 был самым быстрым.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes2         | 68.1  |
| rwh_primes1         | 93.7  |
| rwh_primes          | 94.6  |
| sieve_wheel_30      | 97.4  |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain    | 286.0 |
| sieveOfAtkin        | 314.0 |
| sundaram3           | 416.0 |
+---------------------+-------+

Из всех протестированных методов, допускается numpy , для n = 1000000, primesfrom2to был протестирован быстрее всего.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| primesfrom2to       | 15.9  |
| primesfrom3to       | 18.4  |
| ambi_sieve          | 29.3  |
+---------------------+-------+

Время измерялось с помощью команды:

python -mtimeit -s"import primes" "primes.{method}(1000000)"

с {method}, замененным каждым из имен методов.

primes.py:

#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np

def rwh_primes(n):
    # /2029352/samyi-bystryi-sposob-perechislit-vse-prostye-chisla-nizhe-n
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
    return [2] + [i for i in xrange(3,n,2) if sieve[i]]

def rwh_primes1(n):
    # /2029352/samyi-bystryi-sposob-perechislit-vse-prostye-chisla-nizhe-n
    """ Returns  a list of primes < n """
    sieve = [True] * (n/2)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
    return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]

def rwh_primes2(n):
    # /2029352/samyi-bystryi-sposob-perechislit-vse-prostye-chisla-nizhe-n
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n/3)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
        sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
    return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]

def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
    __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
    61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
    149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
    229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
    313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
    499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
    691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)

    wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1  = [True] * dim
    tk7  = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x*y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
    # inner functions definition
    def del_mult(tk, start, step):
        for k in xrange(start, len(tk), step):
            tk[k] = False
    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]: p.append(cpos + 1)
        if tk7[pos]: p.append(cpos + 7)
        if tk11[pos]: p.append(cpos + 11)
        if tk13[pos]: p.append(cpos + 13)
        if tk17[pos]: p.append(cpos + 17)
        if tk19[pos]: p.append(cpos + 19)
        if tk23[pos]: p.append(cpos + 23)
        if tk29[pos]: p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos+1:]
    # return p list
    return p

def sieveOfEratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <dickinsm@gmail.com>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = range(3, n, 2)
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si*si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]

def sieveOfAtkin(end):
    """sieveOfAtkin(end): return a list of all the prime numbers <end
    using the Sieve of Atkin."""
    # Code by Steve Krenzel, <Sgk284@gmail.com>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = ((end-1) // 2)
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
    for xd in xrange(4, 8*x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
    for xd in xrange(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not(n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
    for x in xrange(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
        for d in xrange(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[:max(0,end-2)]

    for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in xrange(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s  = int(sqrt(end)) + 1
    if s  % 2 == 0:
        s += 1
    primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])

    return primes

def ambi_sieve_plain(n):
    s = range(3, n, 2)
    for m in xrange(3, int(n**0.5)+1, 2): 
        if s[(m-3)/2]: 
            for t in xrange((m*m-3)/2,(n>>1)-1,m):
                s[t]=0
    return [2]+[t for t in s if t>0]

def sundaram3(max_n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

################################################################################
# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in xrange(3, int(n ** 0.5)+1, 2): 
        if s[(m-3)/2]: 
            s[(m*m-3)/2::m]=0
    return np.r_[2, s[s>0]]

def primesfrom3to(n):
    # /2029352/samyi-bystryi-sposob-perechislit-vse-prostye-chisla-nizhe-n
    """ Returns a array of primes, p < n """
    assert n>=2
    sieve = np.ones(n/2, dtype=np.bool)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = False
    return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]    

def primesfrom2to(n):
    # /2029352/samyi-bystryi-sposob-perechislit-vse-prostye-chisla-nizhe-n
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k] = False
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
    return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]

if __name__=='__main__':
    import itertools
    import sys

    def test(f1,f2,num):
        print('Testing {f1} and {f2} return same results'.format(
            f1=f1.func_name,
            f2=f2.func_name))
        if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
            sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))

    n=1000000
    test(sieveOfAtkin,sieveOfEratosthenes,n)
    test(sieveOfAtkin,ambi_sieve,n)
    test(sieveOfAtkin,ambi_sieve_plain,n) 
    test(sieveOfAtkin,sundaram3,n)
    test(sieveOfAtkin,sieve_wheel_30,n)
    test(sieveOfAtkin,primesfrom3to,n)
    test(sieveOfAtkin,primesfrom2to,n)
    test(sieveOfAtkin,rwh_primes,n)
    test(sieveOfAtkin,rwh_primes1,n)         
    test(sieveOfAtkin,rwh_primes2,n)

Запуск тестов сценариев, в которых все реализации дают одинаковый результат.

126 голосов
/ 14 июня 2010

Быстрее и больше памяти Python код:

def primes(n):
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
    return [2] + [i for i in range(3,n,2) if sieve[i]]

или начиная с половины сита

def primes1(n):
    """ Returns  a list of primes < n """
    sieve = [True] * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
    return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]

Более быстрый и более объемный код памяти:

import numpy
def primesfrom3to(n):
    """ Returns a array of primes, 3 <= p < n """
    sieve = numpy.ones(n//2, dtype=numpy.bool)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = False
    return 2*numpy.nonzero(sieve)[0][1::]+1

более быстрый вариант, начиная с трети сита:

import numpy
def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k//3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)//3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

(вышеприведенная) версия кода, написанного на чистом Python, будет выглядеть следующим образом:

def primes2(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    n, correction = n-n%6+6, 2-(n%6>1)
    sieve = [True] * (n//3)
    for i in range(1,int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      k*k//3      ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
        sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

К сожалению, pure-python не использует более простой и быстрый способ выполнения присваивания, и вызов len() внутри цикла, как в [False]*len(sieve[((k*k)//3)::2*k]), слишком медленный. Поэтому мне пришлось импровизировать, чтобы исправить ввод (и избегать больше математики) и сделать некоторую экстремальную (и болезненную) математику.

Лично я думаю, что это позор, что numpy (который так широко используется) не является частью стандартной библиотеки Python и что улучшения в синтаксисе и скорости, похоже, полностью игнорируются разработчиками Python.

42 голосов
/ 15 января 2010

Вот довольно хороший пример из Python Cookbook здесь - самая быстрая версия, предложенная для этого URL:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

так что дало бы

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

Измеряя по приглашению оболочки (как я предпочитаю делать) с этим кодом в pri.py, я наблюдаю:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

так что похоже, что решение Cookbook более чем в два раза быстрее.

28 голосов
/ 15 января 2010

Используя Сито Сундарама , я думаю, что побил рекорд чистого Python:

def sundaram3(max_n):
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

Comparasion:

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop
18 голосов
/ 15 января 2010

Алгоритм быстр, но имеет серьезный недостаток:

>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529

Вы предполагаете, что numbers.pop() вернет наименьшее число в наборе, но это совсем не гарантируется. Наборы неупорядочены, и pop() удаляет и возвращает произвольный элемент, поэтому его нельзя использовать для выбора следующего простого числа из оставшихся чисел.

17 голосов
/ 15 января 2010

Для действительно самым быстрым решением с достаточно большим N было бы загрузить предварительно вычисленный список простых чисел , сохранить его в виде кортежа и сделать что-то вроде:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

Если N > primes[-1] только , рассчитайте больше простых чисел и сохраните новый список в своем коде, поэтому в следующий раз он будет таким же быстрым.

Всегда мыслить нестандартно.

10 голосов
/ 04 июля 2015

Если вы не хотите изобретать велосипед, вы можете установить библиотеку символических математиков sympy (да, она совместима с Python 3)

pip install sympy

И используйте функцию primerange

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))
8 голосов
/ 27 октября 2015

Если вы принимаете itertools, но не NumPy, вот адаптация rwh_primes2 для Python 3, которая работает примерно в два раза быстрее на моей машине. Единственное существенное изменение - использование байтового массива вместо списка для логического значения и использование сжатия вместо понимания списка для построения окончательного списка. (Я бы добавил это как комментарий, как moarningsun, если бы смог.)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

Сравнения:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

и

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801
7 голосов
/ 09 июля 2015

Поучительно написать свой собственный основной код поиска, но также полезно иметь быструю надежную библиотеку под рукой. Я написал обертку вокруг библиотеки *1001* библиотеки * C ++ библиотеки, назвал ее pymes

.

Попробуйте pip install primesieve

import primesieve
primes = primesieve.generate_primes(10**8)

Мне было бы любопытно увидеть сравнение скорости.

6 голосов
/ 08 октября 2017

Вот две обновленные (чисто Python 3.6) версии одной из самых быстрых функций,

from itertools import compress

def rwh_primes1v1(n):
    """ Returns  a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

def rwh_primes1v2(n):
    """ Returns a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2+1)
    for i in range(1,int(n**0.5)//2+1):
        if sieve[i]:
            sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]
...