Я использую арифметику с фиксированной запятой, и мой pow основан на log2 / exp2. Числа состоят из:
int sig = { -1; +1 }
signum
DWORD a[A+B]
число
A
- это число DWORD
с для целой части числа
B
- это число DWORD
с для дробной части
Мое упрощенное решение таково:
//---------------------------------------------------------------------------
longnum exp2 (const longnum &x)
{
int i,j;
longnum c,d;
c.one();
if (x.iszero()) return c;
i=x.bits()-1;
for(d=2,j=_longnum_bits_b;j<=i;j++,d*=d)
if (x.bitget(j))
c*=d;
for(i=0,j=_longnum_bits_b-1;i<_longnum_bits_b;j--,i++)
if (x.bitget(j))
c*=_longnum_log2[i];
if (x.sig<0) {d.one(); c=d/c;}
return c;
}
//---------------------------------------------------------------------------
longnum log2 (const longnum &x)
{
int i,j;
longnum c,d,dd,e,xx;
c.zero(); d.one(); e.zero(); xx=x;
if (xx.iszero()) return c; //**** error: log2(0) = infinity
if (xx.sig<0) return c; //**** error: log2(negative x) ... no result possible
if (d.geq(x,d)==0) {xx=d/xx; xx.sig=-1;}
i=xx.bits()-1;
e.bitset(i); i-=_longnum_bits_b;
for (;i>0;i--,e>>=1) // integer part
{
dd=d*e;
j=dd.geq(dd,xx);
if (j==1) continue; // dd> xx
c+=i; d=dd;
if (j==2) break; // dd==xx
}
for (i=0;i<_longnum_bits_b;i++) // fractional part
{
dd=d*_longnum_log2[i];
j=dd.geq(dd,xx);
if (j==1) continue; // dd> xx
c.bitset(_longnum_bits_b-i-1); d=dd;
if (j==2) break; // dd==xx
}
c.sig=xx.sig;
c.iszero();
return c;
}
//---------------------------------------------------------------------------
longnum pow (const longnum &x,const longnum &y)
{
//x^y = exp2(y*log2(x))
int ssig=+1; longnum c; c=x;
if (y.iszero()) {c.one(); return c;} // ?^0=1
if (c.iszero()) return c; // 0^?=0
if (c.sig<0)
{
c.overflow(); c.sig=+1;
if (y.isreal()) {c.zero(); return c;} //**** error: negative x ^ noninteger y
if (y.bitget(_longnum_bits_b)) ssig=-1;
}
c=exp2(log2(c)*y); c.sig=ssig; c.iszero();
return c;
}
//---------------------------------------------------------------------------
где:
_longnum_bits_a = A*32
_longnum_bits_b = B*32
_longnum_log2[i] = 2 ^ (1/(2^i)) ... precomputed sqrt table
_longnum_log2[0]=sqrt(2)
_longnum_log2[1]=sqrt[tab[0])
_longnum_log2[i]=sqrt(tab[i-1])
longnum::zero() sets *this=0
longnum::one() sets *this=+1
bool longnum::iszero() returns (*this==0)
bool longnum::isnonzero() returns (*this!=0)
bool longnum::isreal() returns (true if fractional part !=0)
bool longnum::isinteger() returns (true if fractional part ==0)
int longnum::bits() return num of used bits in number counted from LSB
longnum::bitget()/bitset()/bitres()/bitxor() are bit access
longnum.overflow() rounds number if there was a overflow X.FFFFFFFFFF...FFFFFFFFF??h -> (X+1).0000000000000...000000000h
int longnum::geq(x,y) is comparition |x|,|y| returns 0,1,2 for (<,>,==)
Все, что вам нужно для понимания этого кода, - это то, что числа в двоичной форме состоят из суммы степеней 2, когда вам нужно вычислить 2 ^ num, тогда это можно переписать так:
2^(b(-n)*2^(-n) + ... + b(+m)*2^(+m))
, где n
- дробные биты, а m
- целочисленные биты. умножение / деление на 2
в двоичной форме - это просто сдвиг битов, поэтому, если вы сложите все вместе, вы получите код для exp2
, аналогичный моему. log2
основан на бинарном поиске ... изменение битов результата с MSB на LSB до совпадения с искомым значением (очень похожий алгоритм для быстрого вычисления sqrt). надеюсь, это поможет прояснить ситуацию ...