Двухступенчатый наименьший квадрат в R - PullRequest
6 голосов
/ 02 октября 2010

Я хочу запустить двухстадийную регрессию наименьших квадратов в R. Кто-нибудь знает, как это сделать? Там есть какой-нибудь пакет? Я знаю, что это можно сделать с помощью Stata, поэтому я думаю, что это можно сделать с помощью R.

Ответы [ 3 ]

8 голосов
/ 04 октября 2010

Возможно, вы захотите быть более конкретным, когда говорите «двухступенчатый пробит-наименьших квадратов». Поскольку вы ссылаетесь на программу Stata, которая реализует это, я предполагаю, что вы говорите о пакете CDSIMEQ, который реализует процедуру Amemiya (1978) для модели Heckit (a.k.a Generalized Tobit, a.k.a. модель Tobit типа II и т. Д.). Как сказал Грант, systemfit сделает для вас Тобит, но не с двумя уравнениями. В пакете MicEcon был Heckit (но пакет делился так много раз, что я не знаю, где он сейчас).

Если вы хотите то, что делает CDSIMEQ, его легко реализовать в R. Я написал функцию, которая копирует CDSIMEQ:

tspls <- function(formula1, formula2, data) {
    # The Continous model
    mf1 <- model.frame(formula1, data)
    y1 <- model.response(mf1)
    x1 <- model.matrix(attr(mf1, "terms"), mf1)

    # The dicontionous model
    mf2 <- model.frame(formula2, data)
    y2 <- model.response(mf2)
    x2 <- model.matrix(attr(mf2, "terms"), mf2)

    # The matrix of all the exogenous variables
    X <- cbind(x1, x2)
    X <- X[, unique(colnames(X))]

    J1 <- matrix(0, nrow = ncol(X), ncol = ncol(x1))
    J2 <- matrix(0, nrow = ncol(X), ncol = ncol(x2))
    for (i in 1:ncol(x1)) J1[match(colnames(x1)[i], colnames(X)), i] <- 1
    for (i in 1:ncol(x2)) J2[match(colnames(x2)[i], colnames(X)), i] <- 1

    # Step 1:
    cat("\n\tNOW THE FIRST STAGE REGRESSION")
    m1 <- lm(y1 ~ X - 1)
    m2 <- glm(y2 ~ X - 1, family = binomial(link = "probit"))
    print(summary(m1))
    print(summary(m2))

    yhat1 <- m1$fitted.values
    yhat2 <- X %*% coef(m2)

    PI1 <- m1$coefficients
    PI2 <- m2$coefficients
    V0 <- vcov(m2)
    sigma1sq <- sum(m1$residuals ^ 2) / m1$df.residual
    sigma12 <- 1 / length(y2) * sum(y2 * m1$residuals / dnorm(yhat2))

    # Step 2:
    cat("\n\tNOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS")

    m1 <- lm(y1 ~ yhat2 + x1 - 1)
    m2 <- glm(y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))
    sm1 <- summary(m1)
    sm2 <- summary(m2)
    print(sm1)
    print(sm2)

    # Step  3:
    cat("\tNOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS\n\n")
    gamma1 <- m1$coefficients[1]
    gamma2 <- m2$coefficients[1]

    cc <- sigma1sq - 2 * gamma1 * sigma12
    dd <- gamma2 ^ 2 * sigma1sq - 2 * gamma2 * sigma12
    H <- cbind(PI2, J1)
    G <- cbind(PI1, J2)

    XX <- crossprod(X)                          # X'X
    HXXH <- solve(t(H) %*% XX %*% H)            # (H'X'XH)^(-1)
    HXXVXXH <- t(H) %*% XX %*% V0 %*% XX %*% H  # H'X'V0X'XH
    Valpha1 <- cc * HXXH + gamma1 ^ 2 * HXXH %*% HXXVXXH %*% HXXH

    GV <- t(G) %*% solve(V0)    # G'V0^(-1)
    GVG <- solve(GV %*% G)      # (G'V0^(-1)G)^(-1)
    Valpha2 <- GVG + dd * GVG %*% GV %*% solve(XX) %*% solve(V0) %*% G %*% GVG

    ans1 <- coef(sm1)
    ans2 <- coef(sm2)

    ans1[,2] <- sqrt(diag(Valpha1))
    ans2[,2] <- sqrt(diag(Valpha2))
    ans1[,3] <- ans1[,1] / ans1[,2]
    ans2[,3] <- ans2[,1] / ans2[,2]
    ans1[,4] <- 2 * pt(abs(ans1[,3]), m1$df.residual, lower.tail = FALSE)
    ans2[,4] <- 2 * pnorm(abs(ans2[,3]), lower.tail = FALSE)

    cat("Continuous:\n")
    print(ans1)
    cat("Dichotomous:\n")
    print(ans2)
}

Для сравнения мы можем воспроизвести образец от автора CDSIMEQ в их статье о пакете .

> library(foreign)
> cdsimeq <- read.dta("http://www.stata-journal.com/software/sj3-2/st0038/cdsimeq.dta")
> tspls(continuous ~ exog3 + exog2 + exog1 + exog4,
+     dichotomous ~ exog1 + exog2 + exog5 + exog6 + exog7,
+     data = cdsimeq)

        NOW THE FIRST STAGE REGRESSION
Call:
lm(formula = y1 ~ X - 1)

Residuals:
      Min        1Q    Median        3Q       Max 
-1.885921 -0.438579 -0.006262  0.432156  2.133738 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
X(Intercept)  0.010752   0.020620   0.521 0.602187    
Xexog3        0.158469   0.021862   7.249 8.46e-13 ***
Xexog2       -0.009669   0.021666  -0.446 0.655488    
Xexog1        0.159955   0.021260   7.524 1.19e-13 ***
Xexog4        0.316575   0.022456  14.097  < 2e-16 ***
Xexog5        0.497207   0.021356  23.282  < 2e-16 ***
Xexog6       -0.078017   0.021755  -3.586 0.000352 ***
Xexog7        0.161177   0.022103   7.292 6.23e-13 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6488 on 992 degrees of freedom
Multiple R-squared: 0.5972,     Adjusted R-squared: 0.594 
F-statistic: 183.9 on 8 and 992 DF,  p-value: < 2.2e-16 


Call:
glm(formula = y2 ~ X - 1, family = binomial(link = "probit"))

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-2.49531  -0.59244   0.01983   0.59708   2.41810  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
X(Intercept)  0.08352    0.05280   1.582 0.113692    
Xexog3        0.21345    0.05678   3.759 0.000170 ***
Xexog2        0.21131    0.05471   3.862 0.000112 ***
Xexog1        0.45591    0.06023   7.570 3.75e-14 ***
Xexog4        0.39031    0.06173   6.322 2.57e-10 ***
Xexog5        0.75955    0.06427  11.818  < 2e-16 ***
Xexog6        0.85461    0.06831  12.510  < 2e-16 ***
Xexog7       -0.16691    0.05653  -2.953 0.003152 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1386.29  on 1000  degrees of freedom
Residual deviance:  754.14  on  992  degrees of freedom
AIC: 770.14

Number of Fisher Scoring iterations: 6


        NOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS
Call:
lm(formula = y1 ~ yhat2 + x1 - 1)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.32152 -0.53160  0.04886  0.53502  2.44818 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
yhat2         0.257592   0.021451  12.009   <2e-16 ***
x1(Intercept) 0.012185   0.024809   0.491    0.623    
x1exog3       0.042520   0.026735   1.590    0.112    
x1exog2       0.011854   0.026723   0.444    0.657    
x1exog1       0.007773   0.028217   0.275    0.783    
x1exog4       0.318636   0.028311  11.255   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7803 on 994 degrees of freedom
Multiple R-squared: 0.4163,     Adjusted R-squared: 0.4128 
F-statistic: 118.2 on 6 and 994 DF,  p-value: < 2.2e-16 


Call:
glm(formula = y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-2.49610  -0.58595   0.01969   0.59857   2.41281  

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
yhat1          1.26287    0.16061   7.863 3.75e-15 ***
x2(Intercept)  0.07080    0.05276   1.342 0.179654    
x2exog1        0.25093    0.06466   3.880 0.000104 ***
x2exog2        0.22604    0.05389   4.194 2.74e-05 ***
x2exog5        0.12912    0.09510   1.358 0.174544    
x2exog6        0.95609    0.07172  13.331  < 2e-16 ***
x2exog7       -0.37128    0.06759  -5.493 3.94e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1386.29  on 1000  degrees of freedom
Residual deviance:  754.21  on  993  degrees of freedom
AIC: 768.21

Number of Fisher Scoring iterations: 6

        NOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS

Continuous:
                Estimate Std. Error    t value   Pr(>|t|)
yhat2         0.25759209  0.1043073 2.46955009 0.01369540
x1(Intercept) 0.01218500  0.1198713 0.10165068 0.91905445
x1exog3       0.04252006  0.1291588 0.32920764 0.74206810
x1exog2       0.01185438  0.1290754 0.09184073 0.92684309
x1exog1       0.00777347  0.1363643 0.05700519 0.95455252
x1exog4       0.31863627  0.1367881 2.32941597 0.02003661
Dichotomous:
                 Estimate Std. Error    z value     Pr(>|z|)
yhat1          1.26286574  0.7395166  1.7076909 0.0876937093
x2(Intercept)  0.07079775  0.2666447  0.2655134 0.7906139867
x2exog1        0.25092561  0.3126763  0.8025092 0.4222584495
x2exog2        0.22603717  0.2739307  0.8251618 0.4092797527
x2exog5        0.12911922  0.4822986  0.2677163 0.7889176766
x2exog6        0.95609385  0.2823662  3.3860070 0.0007091758
x2exog7       -0.37128221  0.3265478 -1.1369920 0.2555416141
2 голосов
/ 02 октября 2010

systemfit также добьется цели.

2 голосов
/ 02 октября 2010

Есть несколько пакетов, доступных в R, чтобы сделать два наименьших квадрата состояния. вот несколько

  1. sem: Двухступенчатые наименьшие квадраты
  2. Zelig: ссылка удалена, больше не работает (28.07.11)

Дайте мне знать, если они служат вашей цели.

...