Есть много вещей, которые вы можете попробовать после оптимизации вашего кода Python для скорости.Если эта программа не нуждается в расширениях C, вы можете запустить ее под PyPy , чтобы воспользоваться ее JIT-компилятором.Вы можете попробовать сделать расширение C для возможно огромных ускорений . Shed Skin даже позволит вам преобразовать вашу программу на Python в автономный двоичный файл C ++.
Я готов использовать вашу программу в соответствии с этими различными сценариями оптимизации, если вы сможете предоставить достаточно кода для сравнительного анализа,
Редактировать : Прежде всего, я должен согласиться со всеми остальными: вы уверены, что правильно измеряете время?Пример кода здесь выполняется 100 раз менее чем за 0,1 секунды, поэтому есть большая вероятность, что либо неправильное время, либо у вас есть узкое место (IO?), Которого нет в примере кода.
Тосказал, я сделал это 300000 человек, поэтому времена были последовательными.Вот адаптированный код, общий для CPython (2.5), PyPy и Shed Skin:
from time import time
import random
import sys
class person(object):
def __init__(self, util):
self.utility = util
self.customer = 0
class population(object):
def __init__(self, numpeople, util):
self.people = []
self.cus = []
self.noncus = []
for u in util:
per = person(u)
self.people.append(per)
def f_w_append(popn):
'''Function with append'''
P = 75
cus = []
noncus = []
# Help CPython a bit
# cus_append, noncus_append = cus.append, noncus.append
for per in popn.people:
if per.utility >= P:
per.customer = 1
cus.append(per)
else:
per.customer = 0
noncus.append(per)
return len(cus)
def f_wo_append(popn):
'''Function without append'''
P = 75
for per in popn.people:
if per.utility >= P:
per.customer = 1
else:
per.customer = 0
numcustomers = 0
for per in popn.people:
if per.customer == 1:
numcustomers += 1
return numcustomers
def main():
try:
numpeople = int(sys.argv[1])
except:
numpeople = 300000
print "Running for %s people, 100 times." % numpeople
begin = time()
random.seed(1)
# Help CPython a bit
uniform = random.uniform
util = [uniform(0.0, 300.0) for _ in xrange(numpeople)]
# util = [random.uniform(0.0, 300.0) for _ in xrange(numpeople)]
popn1 = population(numpeople, util)
start = time()
for _ in xrange(100):
r = f_wo_append(popn1)
print r
print "Without append: %s" % (time() - start)
popn2 = population(numpeople, util)
start = time()
for _ in xrange(100):
r = f_w_append(popn2)
print r
print "With append: %s" % (time() - start)
print "\n\nTotal time: %s" % (time() - begin)
if __name__ == "__main__":
main()
Работать с PyPy так же просто, как и работать с CPython, просто введите «pypy» вместо «python».Для Shed Skin вы должны конвертировать в C ++, скомпилировать и запустить:
shedskin -e makefaster.py && make
# Check that you're using the makefaster.so file and run test
python -c "import makefaster; print makefaster.__file__; makefaster.main()"
А вот код на языке Cython:
from time import time
import random
import sys
cdef class person:
cdef readonly int utility
cdef public int customer
def __init__(self, util):
self.utility = util
self.customer = 0
class population(object):
def __init__(self, numpeople, util):
self.people = []
self.cus = []
self.noncus = []
for u in util:
per = person(u)
self.people.append(per)
cdef int f_w_append(popn):
'''Function with append'''
cdef int P = 75
cdef person per
cus = []
noncus = []
# Help CPython a bit
# cus_append, noncus_append = cus.append, noncus.append
for per in popn.people:
if per.utility >= P:
per.customer = 1
cus.append(per)
else:
per.customer = 0
noncus.append(per)
cdef int lcus = len(cus)
return lcus
cdef int f_wo_append(popn):
'''Function without append'''
cdef int P = 75
cdef person per
for per in popn.people:
if per.utility >= P:
per.customer = 1
else:
per.customer = 0
cdef int numcustomers = 0
for per in popn.people:
if per.customer == 1:
numcustomers += 1
return numcustomers
def main():
cdef int i, r, numpeople
cdef double _0, _300
_0 = 0.0
_300 = 300.0
try:
numpeople = int(sys.argv[1])
except:
numpeople = 300000
print "Running for %s people, 100 times." % numpeople
begin = time()
random.seed(1)
# Help CPython a bit
uniform = random.uniform
util = [uniform(_0, _300) for i in xrange(numpeople)]
# util = [random.uniform(0.0, 300.0) for _ in xrange(numpeople)]
popn1 = population(numpeople, util)
start = time()
for i in xrange(100):
r = f_wo_append(popn1)
print r
print "Without append: %s" % (time() - start)
popn2 = population(numpeople, util)
start = time()
for i in xrange(100):
r = f_w_append(popn2)
print r
print "With append: %s" % (time() - start)
print "\n\nTotal time: %s" % (time() - begin)
if __name__ == "__main__":
main()
Для его сборки приятно иметьsetup.py вот так:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules = [Extension("cymakefaster", ["makefaster.pyx"])]
setup(
name = 'Python code to speed up',
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules
)
Вы создаете его с помощью: python setupfaster.py build_ext --inplace
Затем тестируйте: python -c "import cymakefaster; печатайте cymakefaster. file ; cymakefaster.main () "
Синхронизация запускалась пять раз для каждой версии, при этом Cython был самым быстрым и простым из всех используемых генераторов кода (Shed Skin стремится быть более простым, но загадочнымсообщения об ошибках и неявная статическая типизация усложнили здесь).Что касается лучшего значения, PyPy обеспечивает впечатляющее ускорение в версии счетчика без изменений кода.
#Results (time in seconds for 30000 people, 100 calls for each function):
Mean Min Times
CPython 2.5.2
Without append: 35.037 34.518 35.124, 36.363, 34.518, 34.620, 34.559
With append: 29.251 29.126 29.339, 29.257, 29.259, 29.126, 29.272
Total time: 69.288 68.739 69.519, 70.614, 68.746, 68.739, 68.823
PyPy 1.4.1
Without append: 2.672 2.655 2.655, 2.670, 2.676, 2.690, 2.668
With append: 13.030 12.672 12.680, 12.725, 14.319, 12.755, 12.672
Total time: 16.551 16.194 16.196, 16.229, 17.840, 16.295, 16.194
Shed Skin 0.7 (gcc -O2)
Without append: 1.601 1.599 1.599, 1.605, 1.600, 1.602, 1.599
With append: 3.811 3.786 3.839, 3.795, 3.798, 3.786, 3.839
Total time: 5.704 5.677 5.715, 5.705, 5.699, 5.677, 5.726
Cython 0.14 (gcc -O2)
Without append: 1.692 1.673 1.673, 1.710, 1.678, 1.688, 1.711
With append: 3.087 3.067 3.079, 3.080, 3.119, 3.090, 3.067
Total time: 5.565 5.561 5.562, 5.561, 5.567, 5.562, 5.572
Редактировать : Ааа и более значимые тайминги, для 80000 звонков по 300 человек в каждом:
Results (time in seconds for 300 people, 80000 calls for each function):
Mean Min Times
CPython 2.5.2
Without append: 27.790 25.827 25.827, 27.315, 27.985, 28.211, 29.612
With append: 26.449 24.721 24.721, 27.017, 27.653, 25.576, 27.277
Total time: 54.243 50.550 50.550, 54.334, 55.652, 53.789, 56.892
Cython 0.14 (gcc -O2)
Without append: 1.819 1.760 1.760, 1.794, 1.843, 1.827, 1.871
With append: 2.089 2.063 2.100, 2.063, 2.098, 2.104, 2.078
Total time: 3.910 3.859 3.865, 3.859, 3.944, 3.934, 3.951
PyPy 1.4.1
Without append: 0.889 0.887 0.894, 0.888, 0.890, 0.888, 0.887
With append: 1.671 1.665 1.665, 1.666, 1.671, 1.673, 1.681
Total time: 2.561 2.555 2.560, 2.555, 2.561, 2.561, 2.569
Shed Skin 0.7 (g++ -O2)
Without append: 0.310 0.301 0.301, 0.308, 0.317, 0.320, 0.303
With append: 1.712 1.690 1.733, 1.700, 1.735, 1.690, 1.702
Total time: 2.027 2.008 2.035, 2.008, 2.052, 2.011, 2.029
Shed Skin становится быстрее, PyPy превосходит Cython.Все три вещи намного быстрее по сравнению с CPython.