Это для 32-битной Java, но должна быть возможность адаптировать его к 64-битной.Предполагается, что это будет самая быстрая причина, по которой не происходит разветвление.
static public final int msb(int n) {
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
n >>>= 1;
n += 1;
return n;
}
static public final int msb_index(int n) {
final int[] multiply_de_bruijn_bit_position = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
return multiply_de_bruijn_bit_position[(msb(n) * 0x077CB531) >>> 27];
}
Вот дополнительная информация от: http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup
// Count the consecutive zero bits (trailing) on the right with multiply and lookup
unsigned int v; // find the number of trailing zeros in 32-bit v
int r; // result goes here
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v & -v) * 0x077CB531U)) >> 27];
// Converting bit vectors to indices of set bits is an example use for this.
// It requires one more operation than the earlier one involving modulus
// division, but the multiply may be faster. The expression (v & -v) extracts
// the least significant 1 bit from v. The constant 0x077CB531UL is a de Bruijn
// sequence, which produces a unique pattern of bits into the high 5 bits for
// each possible bit position that it is multiplied against. When there are no
// bits set, it returns 0. More information can be found by reading the paper
// Using de Bruijn Sequences to Index 1 in a Computer Word by
// Charles E. Leiserson, Harald Prokof, and Keith H. Randall.
и как последнее: http://supertech.csail.mit.edu/papers/debruijn.pdf