Теперь для моего предпочтительного метода.
Хорошо, как я уже упоминал в предыдущих ответах, строки с одинаковыми записями в каждом столбце в матрице A умножатся на один и тот же результат в матрице AB.Если мы сможем сохранить эту взаимосвязь, то теоретически мы сможем значительно ускорить вычисления (профилировщик - ваш друг).
В этом методе мы поддерживаем структуру строки * столбца матрицы.
Каждая строкасжимается любым способом, который может распаковать достаточно быстро, чтобы не слишком сильно влиять на скорость умножения.RLE может быть достаточно.
Теперь у нас есть список сжатых строк.
Мы используем метод энтропийного кодирования (например, Шеннона-Фано, Хаффмана или арифметическое кодирование), но мы не сжимаемданные в строках с этим, мы используем его для сжатия набора строк.Мы используем его для кодирования относительной частоты строк.Т.е. мы обрабатываем строку так же, как стандартное энтропийное кодирование будет обрабатывать символ / байт.
В этом примере RLE сжимает a строку, а Хаффман сжимает весь set строк.
Так, например, учитывая следующую матрицу (с префиксом номеров строк, Хаффман использовал для простоты объяснения)
0 | 8 8 8 8 8 8 8 8 8 8 8 8 8 |
1 | 8 4 8 8 1 1 1 1 1 8 8 8 8 |
2 | 8 4 8 8 1 1 1 1 1 8 8 8 8 |
3 | 8 4 8 8 1 1 1 1 1 8 8 8 8 |
4 | 8 4 8 8 1 1 1 1 1 8 8 8 8 |
5 | 8 4 8 8 1 1 1 1 1 8 8 8 8 |
6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 |
7 | 8 8 3 3 3 3 3 3 3 3 3 3 3 |
Длина серии в кодировке
0 | 8{13} |
1 | 8{1} 4{1} 8{2} 1{5} 8{4} |
2 | 8{1} 4{1} 8{2} 1{5} 8{4} |
3 | 8{1} 4{1} 8{2} 1{5} 8{4} |
4 | 8{1} 4{1} 8{2} 1{5} 8{4} |
5 | 8{1} 4{1} 8{2} 1{5} 8{4} |
6 | 8{13} |
7 | 8{2} 3{11} |
Итак, 0 и 6 появляются дважды, а 1 - 5 появляются 5 раз.7. только один раз.
Таблица частот
A: 5 (1-5) | 8{1} 4{1} 8{2} 1{5} 8{4} |
B: 2 (0,6) | 8{13} |
C: 1 7 | 8{2} 3{11} |
Дерево Хаффмана
0|1
/ \
A 0|1
/ \
B C
Таким образом, в этом случае требуется один бит (для каждой строки) для кодирования строк 1 -5 и 2 бита для кодирования строк 0, 6 и 7.
(Если количество циклов превышает несколько байтов, то подсчет freq для хэша, который вы создаете при выполнении RLE).
Вы храните дерево Хаффмана, уникальные строки и битовый поток кодирования строк.
Приятной особенностью Хаффмана является то, что у него есть уникальное свойство префикса, поэтому вы всегда будете знать, когда закончите.Таким образом, учитывая битовую строку 10000001011
, вы можете перестроить матрицу A из сохраненных уникальных строк и дерева.Кодированный битовый поток сообщает вам порядок появления строк.
Возможно, вы захотите взглянуть на адаптивное кодирование Хаффмана или его арифметический аналог.
Просмотр строк в A с тем же столбцомзаписи умножаются на один и тот же результат в AB по вектору B, вы можете кэшировать результат и использовать его вместо его повторного вычисления (всегда полезно избегать умножений 100M * 100M, если можете).
Ссылки на дополнительную информацию:
Арифметическое кодирование + Статистическое моделирование = Сжатие данных
Приоритетные очереди и STL
Арифметическое кодирование
Код Хаффмана
Сравнение
Несжатый
0 1 2 3 4 5 6 7
=================================
0 | 3 3 3 3 3 3 3 3 |
|-------+ +-------|
1 | 4 4 | 3 3 3 3 | 4 4 |
| +-----------+---+ |
2 | 4 4 | 5 5 5 | 1 | 4 4 |
| | | | |
3 | 4 4 | 5 5 5 | 1 | 4 4 |
|---+---| | | |
4 | 5 | 0 | 5 5 5 | 1 | 4 4 |
| | +---+-------+---+-------|
5 | 5 | 0 0 | 2 2 2 2 2 |
| | | |
6 | 5 | 0 0 | 2 2 2 2 2 |
| | +-------------------|
7 | 5 | 0 0 0 0 0 0 0 |
=================================
= 64 байта
Quadtree
0 1 2 3 4 5 6 7
=================================
0 | 3 | 3 | | | 3 | 3 |
|---+---| 3 | 3 |---+---|
1 | 4 | 4 | | | 4 | 4 |
|-------+-------|-------+-------|
2 | | | 5 | 1 | |
| 4 | 5 |---+---| 4 |
3 | | | 5 | 1 | |
|---------------+---------------|
4 | 5 | 0 | 5 | 5 | 5 | 1 | 4 | 4 |
|---+---|---+---|---+---|---+---|
5 | 5 | 0 | 0 | 2 | 2 | 2 | 2 | 2 |
|-------+-------|-------+-------|
6 | 5 | 0 | 0 | 2 | 2 | 2 | 2 | 2 |
|---+---+---+---|---+---+---+---|
7 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
=================================
0 +- 0 +- 0 -> 3
| +- 1 -> 3
| +- 2 -> 4
| +- 3 -> 4
+- 1 -> 3
+- 2 -> 4
+- 3 -> 5
1 +- 0 -> 3
+- 1 +- 0 -> 3
| +- 1 -> 3
| +- 2 -> 4
| +- 3 -> 4
+- 2 +- 0 -> 5
| +- 1 -> 1
| +- 2 -> 5
| +- 3 -> 1
+- 3 -> 4
2 +- 0 +- 0 -> 5
| +- 1 -> 0
| +- 2 -> 5
| +- 3 -> 0
+- 1 +- 0 -> 5
| +- 1 -> 5
| +- 2 -> 0
| +- 3 -> 2
+- 2 +- 0 -> 5
| +- 1 -> 0
| +- 2 -> 5
| +- 3 -> 0
+- 3 +- 0 -> 0
+- 1 -> 2
+- 2 -> 0
+- 3 -> 0
3 +- 0 +- 0 -> 5
| +- 1 -> 1
| +- 2 -> 2
| +- 3 -> 2
+- 1 +- 0 -> 4
| +- 1 -> 4
| +- 2 -> 2
| +- 3 -> 2
+- 2 +- 0 -> 2
| +- 1 -> 2
| +- 2 -> 0
| +- 3 -> 0
+- 3 +- 0 -> 2
+- 1 -> 2
+- 2 -> 0
+- 3 -> 0
((1*4) + 3) + ((2*4) + 2) + (4 * 8) = 49 leaf nodes
49 * (2 + 1) = 147 (2 * 8 bit indexer, 1 byte data)
+ 14 inner nodes -> 2 * 14 bytes (2 * 8 bit indexers)
= 175 Bytes
Хэш области
0 1 2 3 4 5 6 7
=================================
0 | 3 3 3 3 3 3 3 3 |
|-------+---------------+-------|
1 | 4 4 | 3 3 3 3 | 4 4 |
| +-----------+---+ |
2 | 4 4 | 5 5 5 | 1 | 4 4 |
| | | | |
3 | 4 4 | 5 5 5 | 1 | 4 4 |
|---+---| | | |
4 | 5 | 0 | 5 5 5 | 1 | 4 4 |
| + - +---+-------+---+-------|
5 | 5 | 0 0 | 2 2 2 2 2 |
| | | |
6 | 5 | 0 0 | 2 2 2 2 2 |
| +-------+-------------------|
7 | 5 | 0 0 0 0 0 0 0 |
=================================
0: (4,1; 4,1), (5,1; 6,2), (7,1; 7,7) | 3
1: (2,5; 4,5) | 1
2: (5,3; 6,7) | 1
3: (0,0; 0,7), (1,2; 1,5) | 2
4: (1,0; 3,1), (1,6; 4,7) | 2
5: (2,2; 4,4), (4,0; 7,0) | 2
Регионы: (3 + 1 +1 + 2 + 2 + 2) * 5 = 55 байт {4-байтовый прямоугольник, 1-байтовые данные)
{Таблица поиска является отсортированным массивом, поэтому она нетребуется дополнительное хранилище}.
RLE в кодировке Хаффмана
0 | 3 {8} | 1
1 | 4 {2} | 3 {4} | 4 {2} | 2
2,3 | 4 {2} | 5 {3} | 1 {1} | 4 {2} | 4
4 | 5 {1} | 0 {1} | 5 {3} | 1 {1} | 4 {2} | 5
5,6 | 5 {1} | 0 {2} | 2 {5} | 3
7 | 5 {1} | 0 {7} | 2
RLE Data: (1 + 3+ 4 + 5 + 3 + 2) * 2 = 36
Bit Stream: 20 bits packed into 3 bytes = 3
Huffman Tree: 10 nodes * 3 = 30
= 69 Bytes
Один поток RIG Giant
3{8};4{2};3{4};4{4};5{3};1{1};4{4};5{3};1{1};4{2};5{1};0{1};
5{3};1{1};4{2};5{1};0{2};2{5};5{1};0{2};2{5};5{1};0{7}
= 2 * 23 = 46 Bytes
Один поток Giant RLE, закодированный с общим префиксом свертывания
3{8};
4{2};3{4};
4{4};5{3};1{1};
4{4};5{3};
1{1};4{2};5{1};0{1};5{3};
1{1};4{2};5{1};0{2};2{5};
5{1};0{2};2{5};
5{1};0{7}
0 + 0 -> 3{8};4{2};3{4};
+ 1 -> 4{4};5{3};1{1};
1 + 0 -> 4{2};5{1} + 0 -> 0{1};5{3};1{1};
| + 1 -> 0{2}
|
+ 1 -> 2{5};5{1} + 0 -> 0{2};
+ 1 -> 0{7}
3{8};4{2};3{4} | 00
4{4};5{3};1{1} | 01
4{4};5{3};1{1} | 01
4{2};5{1};0{1};5{3};1{1} | 100
4{2};5{1};0{2} | 101
2{5};5{1};0{2} | 110
2{5};5{1};0{7} | 111
Bit stream: 000101100101110111
RLE Data: 16 * 2 = 32
Tree: : 5 * 2 = 10
Bit stream: 18 bits in 3 bytes = 3
= 45 bytes