Найти, к какому сезону относится конкретная дата - PullRequest
41 голосов
/ 29 февраля 2012

У меня есть вектор дат, и для каждой записи я бы хотел назначить сезон.Так, например, если дата находится между 21.12.и 21.3. Я бы сказал, что это winter.До сих пор я пробовал следующий код, но я не мог сделать его более общим, независимо от года .

my.dates <- as.Date("2011-12-01", format = "%Y-%m-%d") + 0:60
low.date <- as.Date("2011-12-15", format = "%Y-%m-%d")
high.date <- as.Date("2012-01-15", format = "%Y-%m-%d")

my.dates[my.dates <= high.date & my.dates >= low.date] 
 [1] "2011-12-15" "2011-12-16" "2011-12-17" "2011-12-18" "2011-12-19" "2011-12-20" "2011-12-21" "2011-12-22" "2011-12-23" "2011-12-24" "2011-12-25"
[12] "2011-12-26" "2011-12-27" "2011-12-28" "2011-12-29" "2011-12-30" "2011-12-31" "2012-01-01" "2012-01-02" "2012-01-03" "2012-01-04" "2012-01-05"
[23] "2012-01-06" "2012-01-07" "2012-01-08" "2012-01-09" "2012-01-10" "2012-01-11" "2012-01-12" "2012-01-13" "2012-01-14" "2012-01-15"

Я пытался отформатировать даты без года, но этоне работает.

ld <- as.Date("12-15", format = "%m-%d")
hd <- as.Date("01-15", format = "%m-%d")
my.dates[my.dates <= hd & my.dates >= ld] 

Ответы [ 8 ]

46 голосов
/ 29 февраля 2012

Как насчет использования что-то вроде этого:

getSeason <- function(DATES) {
    WS <- as.Date("2012-12-15", format = "%Y-%m-%d") # Winter Solstice
    SE <- as.Date("2012-3-15",  format = "%Y-%m-%d") # Spring Equinox
    SS <- as.Date("2012-6-15",  format = "%Y-%m-%d") # Summer Solstice
    FE <- as.Date("2012-9-15",  format = "%Y-%m-%d") # Fall Equinox

    # Convert dates from any year to 2012 dates
    d <- as.Date(strftime(DATES, format="2012-%m-%d"))

    ifelse (d >= WS | d < SE, "Winter",
      ifelse (d >= SE & d < SS, "Spring",
        ifelse (d >= SS & d < FE, "Summer", "Fall")))
}

my.dates <- as.Date("2011-12-01", format = "%Y-%m-%d") + 0:60
head(getSeason(my.dates), 24)
#  [1] "Fall"   "Fall"   "Fall"   "Fall"   "Fall"   "Fall"   "Fall"  
#  [8] "Fall"   "Fall"   "Fall"   "Fall"   "Fall"   "Fall"   "Fall"  
# [15] "Winter" "Winter" "Winter" "Winter" "Winter" "Winter"

Одно примечание: 2012 год - хороший год для преобразования всех дат; поскольку это високосный год, любые 29 февраля в вашем наборе данных будут обрабатываться плавно.

10 голосов
/ 29 февраля 2012

У меня есть нечто такое же безобразное, как у Тима:

R> toSeason <- function(dat) {
+ 
+     stopifnot(class(dat) == "Date")
+ 
+     scalarCheck <- function(dat) {
+         m <- as.POSIXlt(dat)$mon + 1        # correct for 0:11 range
+         d <- as.POSIXlt(dat)$mday           # correct for 0:11 range
+         if ((m == 3 & d >= 21) | (m == 4) | (m == 5) | (m == 6 & d < 21)) {
+             r <- 1
+         } else if ((m == 6 & d >= 21) | (m == 7) | (m == 8) | (m == 9 & d < 21)) {
+             r <- 2
+         } else if ((m == 9 & d >= 21) | (m == 10) | (m == 11) | (m == 12 & d < 21)) {
+             r <- 3
+         } else {
+             r <- 4
+         }
+         r
+     }
+ 
+     res <- sapply(dat, scalarCheck)
+     res <- ordered(res, labels=c("Spring", "Summer", "Fall", "Winter"))
+     invisible(res)
+ }
R> 

А вот и тест:

R> date <- Sys.Date() + (0:11)*30
R> DF <- data.frame(Date=date, Season=toSeason(date))
R> DF
         Date Season
1  2012-02-29 Winter
2  2012-03-30 Spring
3  2012-04-29 Spring
4  2012-05-29 Spring
5  2012-06-28 Summer
6  2012-07-28 Summer
7  2012-08-27 Summer
8  2012-09-26   Fall
9  2012-10-26   Fall
10 2012-11-25   Fall
11 2012-12-25 Winter
12 2013-01-24 Winter
R> summary(DF)
      Date               Season 
 Min.   :2012-02-29   Spring:3  
 1st Qu.:2012-05-21   Summer:3  
 Median :2012-08-12   Fall  :3  
 Mean   :2012-08-12   Winter:3  
 3rd Qu.:2012-11-02             
 Max.   :2013-01-24             
R> 
6 голосов
/ 29 февраля 2012

Я бы создал таблицу поиска и пошел оттуда.Пример (обратите внимание на обфускацию кода с использованием функции d() и прагматичный способ заполнения лута):

# Making lookup table (lut), only needed once. You can save
# it using save() for later use. Note I take a leap year.
d = function(month_day) which(lut$month_day == month_day)
lut = data.frame(all_dates = as.POSIXct("2012-1-1") + ((0:365) * 3600 * 24),
                 season = NA)
lut = within(lut, { month_day = strftime(all_dates, "%b-%d") })
lut[c(d("Jan-01"):d("Mar-20"), d("Dec-21"):d("Dec-31")), "season"] = "winter"
lut[c(d("Mar-21"):d("Jun-20")), "season"] = "spring"
lut[c(d("Jun-21"):d("Sep-20")), "season"] = "summer"
lut[c(d("Sep-21"):d("Dec-20")), "season"] = "autumn"
rownames(lut) = lut$month_day

После создания таблицы поиска вы можете легко извлечь из нее какой сезон месяца/ день комбинация принадлежит:

dat = data.frame(dates = Sys.Date() + (0:11)*30)
dat = within(dat, { 
  season =  lut[strftime(dates, "%b-%d"), "season"] 
 })
> dat
        dates season
1  2012-02-29 winter
2  2012-03-30 spring
3  2012-04-29 spring
4  2012-05-29 spring
5  2012-06-28 summer
6  2012-07-28 summer
7  2012-08-27 summer
8  2012-09-26 autumn
9  2012-10-26 autumn
10 2012-11-25 autumn
11 2012-12-25 winter
12 2013-01-24 winter

Все красиво и векторизовано :).Я думаю, что как только таблица создана, это очень быстро.

4 голосов
/ 29 февраля 2012

Я думаю, что это сделало бы это, но это уродливое решение:

    my.dates <- as.Date("2011-12-01", format = "%Y-%m-%d") + 0:60
    ld <- as.Date("12-15", format = "%m-%d")
    hd <- as.Date("01-15", format = "%m-%d")
    my.dates2 <- as.Date(unlist(lapply(strsplit(as.character(my.dates),split=""),function(x)   paste(x[6:10],collapse=""))),format="%m-%d")
    my.dates[my.dates2 <= hd | my.dates2 >= ld] 
    [1] "2011-12-15" "2011-12-16" "2011-12-17" "2011-12-18" "2011-12-19"
    [6] "2011-12-20" "2011-12-21" "2011-12-22" "2011-12-23" "2011-12-24"
    [11] "2011-12-25" "2011-12-26" "2011-12-27" "2011-12-28" "2011-12-29"
    [16] "2011-12-30" "2011-12-31" "2012-01-01" "2012-01-02" "2012-01-03"
    [21] "2012-01-04" "2012-01-05" "2012-01-06" "2012-01-07" "2012-01-08"
    [26] "2012-01-09" "2012-01-10" "2012-01-11" "2012-01-12" "2012-01-13"
    [31] "2012-01-14" "2012-01-15"
2 голосов
/ 02 августа 2018

Вот более общее решение, которое, тем не менее, нуждается в 3 библиотеках ... Он учитывает все годы и полушарие:

library(data.table)
library(zoo)
library(dplyr)

get.seasons <- function(dates, hemisphere = "N"){
  years <- unique(year(dates))
  years <- c(min(years - 1), max(years + 1), years) %>% sort

  if(hemisphere == "N"){
    seasons <- c("winter", "spring", "summer", "fall")}else{
      seasons <- c("summer", "fall", "winter", "spring")}

  dt.dates <- bind_rows(
    data.table(date = as.Date(paste0(years, "-12-21")), init = seasons[1], type = "B"),# Summer in south hemisphere
    data.table(date = as.Date(paste0(years, "-3-21")), init = seasons[2], type = "B"), # Fall in south hemisphere
    data.table(date = as.Date(paste0(years, "-6-21")), init = seasons[3], type = "B"), # Winter in south hemisphere
    data.table(date = as.Date(paste0(years, "-9-23")), init = seasons[4], type = "B"), # Winter in south hemisphere
    data.table(date = dates, i = 1:(length(dates)), type = "A") # dates to compute
  )[order(date)] 

  dt.dates[, init := zoo::na.locf(init)] 

  return(dt.dates[type == "A"][order(i)]$init)
}
2 голосов
/ 31 марта 2018

Просто используйте функцию time2season. Он получает дату и генерирует сезон:

time2season(x, out.fmt = "months", type="default")

Вы можете найти больше информации здесь .

2 голосов
/ 13 декабря 2016

Я думаю, что библиотечный зоопарк будет легко

   library(zoo)
      yq <- as.yearqtr(as.yearmon(DF$dates, "%m/%d/%Y") + 1/12)
      DF$Season <- factor(format(yq, "%q"), levels = 1:4, 
      labels = c("winter", "spring", "summer", "fall"))
1 голос
/ 18 декабря 2015

Мое решение не быстрое, но гибкое в отношении начала сезонов, если они определены в кадре данных сначала для функции assignSeason.Требуется magrittr для функций трубопровода, lubridate для функции year и dplyr для mutate.

seasons <- data.frame(
   SE = as.POSIXct(c("2009-3-20", "2010-3-20", "2011-3-20", "2012-3-20", 
        "2013-3-20", "2014-3-20"), format="%Y-%m-%d"),
   SS = as.POSIXct(c("2009-6-21", "2010-6-21", "2011-6-21", "2012-6-20",
        "2013-6-21", "2014-6-21"), format="%Y-%m-%d"),
   FE = as.POSIXct(c("2009-9-22", "2010-9-23", "2011-9-23", "2012-9-22",
        "2013-9-22", "2014-9-23"), format="%Y-%m-%d"),
   WS = as.POSIXct(c("2009-12-21", "2010-12-21", "2011-12-22", "2012-12-21", 
        "2013-12-21", "2014-12-21"), format="%Y-%m-%d")
)

assignSeason <- function(dat, SeasonStarts=seasons) {
    dat %<>% mutate(
        Season = lapply(Date,
            function(x) {
                findInterval(
                    x, 
                    SeasonStarts[which(year(x)==year(SeasonStarts$WS)), ]
                )
            }
        ) %>% unlist    
    )
    dat[which(dat$Season==0 | dat$Season==4), ]$Season   <- "Winter"
    dat[which(dat$Season==1), ]$Season                  <- "Spring"
    dat[which(dat$Season==2), ]$Season                  <- "Summer"
    dat[which(dat$Season==3), ]$Season                  <- "Fall"
    return(dat)
}

Пример данных:

dat = data.frame(
    Date = as.POSIXct(strptime(as.Date("2011-12-01", format = "%Y-%m-%d") + 
        (0:10)*30, format="%Y-%m-%d"))
)
dat %>% assignSeason

Результат:

         Date Season
1  2011-12-01   Fall
2  2011-12-31 Winter
3  2012-01-30 Winter
4  2012-02-29 Winter
5  2012-03-30 Spring
6  2012-04-29 Spring
7  2012-05-29 Spring
8  2012-06-28 Summer
9  2012-07-28 Summer
10 2012-08-27 Summer
11 2012-09-26   Fall
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...