спроектировать стек таким образом, чтобы getMinimum () был равен O (1) - PullRequest
115 голосов
/ 26 марта 2009

Это один из вопросов интервью. Вам необходимо спроектировать стек, содержащий целочисленное значение, чтобы функция getMinimum () возвращала минимальный элемент в стеке.

Например: рассмотрим приведенный ниже пример

case #1

5  --> TOP
1
4
6
2

When getMinimum() is called it should return 1, which is the minimum element 
in the stack. 

case #2

stack.pop()
stack.pop()

Note: Both 5 and 1 are poped out of the stack. So after this, the stack
looks like,

4  --> TOP
6
2

When getMinimum() is called is should return 2 which is the minimum in the 
stack.

Constriants:

  1. getMinimum должен возвращать минимальное значение в O (1)
  2. При проектировании также необходимо учитывать ограничение пространства, и если вы используете дополнительное пространство, оно должно иметь постоянное пространство.

Ответы [ 30 ]

0 голосов
/ 09 октября 2014

Я нашел это решение здесь

struct StackGetMin {
  void push(int x) {
    elements.push(x);
    if (minStack.empty() || x <= minStack.top())
      minStack.push(x);
  }
  bool pop() {
    if (elements.empty()) return false;
    if (elements.top() == minStack.top())
      minStack.pop();
    elements.pop();
    return true;
  }
  bool getMin(int &min) {
    if (minStack.empty()) {
      return false;
    } else {
      min = minStack.top();
      return true;
    }
  }
  stack<int> elements;
  stack<int> minStack;
};
0 голосов
/ 23 сентября 2014
#include<stdio.h>
struct stack
{
    int data;
    int mindata;
}a[100];

void push(int *tos,int input)
{
    if (*tos > 100)
    {
        printf("overflow");
        return;
    }
    (*tos)++;
    a[(*tos)].data=input;
    if (0 == *tos)
        a[*tos].mindata=input;
    else if (a[*tos -1].mindata < input)
        a[*tos].mindata=a[*tos -1].mindata;
    else
        a[*tos].mindata=input;
}

int pop(int * tos)
{
    if (*tos <= -1)
    {
        printf("underflow");
        return -1;
    }
    return(a[(*tos)--].data);
}
void display(int tos)
{
    while (tos > -1)
    {
        printf("%d:%d\t",a[tos].data,a[tos].mindata);
        tos--;
    }    
}

int min(int tos)
{
   return(a[tos].mindata);
}
int main()
{
int tos=-1,x,choice;
while(1)
{
    printf("press 1-push,2-pop,3-mindata,4-display,5-exit ");
    scanf("%d",&choice);
    switch(choice)
    {
    case 1: printf("enter data to push");
            scanf("%d",&x);
            push(&tos,x);
            break;
    case 2: printf("the poped out data=%d ",pop(&tos));
            break;
    case 3: printf("The min peeped data:%d",min(tos));
            break;
    case 4: printf("The elements of stack \n");
            display(tos);
            break;
    default: exit(0);
}
}
0 голосов
/ 26 февраля 2017

Я думаю, вы можете просто использовать LinkedList в своей реализации стека.

Когда вы нажимаете значение в первый раз, вы помещаете это значение в качестве заголовка связного списка.

затем каждый раз, когда вы нажимаете значение, если новое значение

если нет, то выполнить операцию добавления.

Когда вы делаете pop (), вы проверяете, есть ли min == connectedlist.head.data, если да, то head = head.next;

Вот мой код.

public class Stack {

int[] elements;
int top;
Linkedlists min;

public Stack(int n) {
    elements = new int[n];
    top = 0;
    min = new Linkedlists();
}

public void realloc(int n) {
    int[] tab = new int[n];
    for (int i = 0; i < top; i++) {
        tab[i] = elements[i];
    }

    elements = tab;
}

public void push(int x) {
    if (top == elements.length) {
        realloc(elements.length * 2);
    }
    if (top == 0) {
        min.pre(x);
    } else if (x < min.head.data) {
        min.pre(x);
    } else {
        min.app(x);
    }
    elements[top++] = x;
}

public int pop() {

    int x = elements[--top];
    if (top == 0) {

    }
    if (this.getMin() == x) {
        min.head = min.head.next;
    }
    elements[top] = 0;
    if (4 * top < elements.length) {
        realloc((elements.length + 1) / 2);
    }

    return x;
}

public void display() {
    for (Object x : elements) {
        System.out.print(x + " ");
    }

}

public int getMin() {
    if (top == 0) {
        return 0;
    }
    return this.min.head.data;
}

public static void main(String[] args) {
    Stack stack = new Stack(4);
    stack.push(2);
    stack.push(3);
    stack.push(1);
    stack.push(4);
    stack.push(5);
    stack.pop();
    stack.pop();
    stack.pop();
    stack.push(1);
    stack.pop();
    stack.pop();
    stack.pop();
    stack.push(2);
    System.out.println(stack.getMin());
    stack.display();

}

 }
0 голосов
/ 21 мая 2016
class FastStack {

    private static class StackNode {
        private Integer data;
        private StackNode nextMin;

        public StackNode(Integer data) {
            this.data = data;
        }

        public Integer getData() {
            return data;
        }

        public void setData(Integer data) {
            this.data = data;
        }

        public StackNode getNextMin() {
            return nextMin;
        }

        public void setNextMin(StackNode nextMin) {
            this.nextMin = nextMin;
        }

    }

    private LinkedList<StackNode> stack = new LinkedList<>();

    private StackNode currentMin = null;

    public void push(Integer item) {
        StackNode node = new StackNode(item);
        if (currentMin == null) {
            currentMin = node;
            node.setNextMin(null);
        } else if (item < currentMin.getData()) {
            StackNode oldMinNode = currentMin;
            node.setNextMin(oldMinNode);
            currentMin = node;
        }

        stack.addFirst(node);
    }

    public Integer pop() {
        if (stack.isEmpty()) {
            throw new EmptyStackException();
        }
        StackNode node = stack.peek();
        if (currentMin == node) {
            currentMin = node.getNextMin();
        }
        stack.removeFirst();
        return node.getData();
    }

    public Integer getMinimum() {
        if (stack.isEmpty()) {
            throw new NoSuchElementException("Stack is empty");
        }
        return currentMin.getData();
    }
}
0 голосов
/ 20 апреля 2016

Вот PHP-реализация того, что объясняется в Ответ Джона Скита как немного лучшая реализация сложности пространства для получения максимального стека в O (1).

<?php

/**
 * An ordinary stack implementation.
 *
 * In real life we could just extend the built-in "SplStack" class.
 */
class BaseIntegerStack
{
    /**
     * Stack main storage.
     *
     * @var array
     */
    private $storage = [];

    // ------------------------------------------------------------------------
    // Public API
    // ------------------------------------------------------------------------

    /**
     * Pushes to stack.
     *
     * @param  int $value New item.
     *
     * @return bool
     */
    public function push($value)
    {
        return is_integer($value)
            ? (bool) array_push($this->storage, $value)
            : false;
    }

    /**
     * Pops an element off the stack.
     *
     * @return int
     */
    public function pop()
    {
        return array_pop($this->storage);
    }

    /**
     * See what's on top of the stack.
     *
     * @return int|bool
     */
    public function top()
    {
        return empty($this->storage)
            ? false
            : end($this->storage);
    }

    // ------------------------------------------------------------------------
    // Magic methods
    // ------------------------------------------------------------------------

    /**
     * String representation of the stack.
     *
     * @return string
     */
    public function __toString()
    {
        return implode('|', $this->storage);
    }
} // End of BaseIntegerStack class

/**
 * The stack implementation with getMax() method in O(1).
 */
class Stack extends BaseIntegerStack
{
    /**
     * Internal stack to keep track of main stack max values.
     *
     * @var BaseIntegerStack
     */
    private $maxStack;

    /**
     * Stack class constructor.
     *
     * Dependencies are injected.
     *
     * @param BaseIntegerStack $stack Internal stack.
     *
     * @return void
     */
    public function __construct(BaseIntegerStack $stack)
    {
        $this->maxStack = $stack;
    }

    // ------------------------------------------------------------------------
    // Public API
    // ------------------------------------------------------------------------

    /**
     * Prepends an item into the stack maintaining max values.
     *
     * @param  int $value New item to push to the stack.
     *
     * @return bool
     */
    public function push($value)
    {
        if ($this->isNewMax($value)) {
            $this->maxStack->push($value);
        }

        parent::push($value);
    }

    /**
     * Pops an element off the stack maintaining max values.
     *
     * @return int
     */
    public function pop()
    {
        $popped = parent::pop();

        if ($popped == $this->maxStack->top()) {
            $this->maxStack->pop();
        }

        return $popped;
    }

    /**
     * Finds the maximum of stack in O(1).
     *
     * @return int
     * @see push()
     */
    public function getMax()
    {
        return $this->maxStack->top();
    }

    // ------------------------------------------------------------------------
    // Internal helpers
    // ------------------------------------------------------------------------

    /**
     * Checks that passing value is a new stack max or not.
     *
     * @param  int $new New integer to check.
     *
     * @return boolean
     */
    private function isNewMax($new)
    {
        return empty($this->maxStack) OR $new > $this->maxStack->top();
    }

} // End of Stack class

// ------------------------------------------------------------------------
// Stack Consumption and Test
// ------------------------------------------------------------------------
$stack = new Stack(
    new BaseIntegerStack
);

$stack->push(9);
$stack->push(4);
$stack->push(237);
$stack->push(5);
$stack->push(556);
$stack->push(15);

print "Stack: $stack\n";
print "Max: {$stack->getMax()}\n\n";

print "Pop: {$stack->pop()}\n";
print "Pop: {$stack->pop()}\n\n";

print "Stack: $stack\n";
print "Max: {$stack->getMax()}\n\n";

print "Pop: {$stack->pop()}\n";
print "Pop: {$stack->pop()}\n\n";

print "Stack: $stack\n";
print "Max: {$stack->getMax()}\n";

// Here's the sample output:
//
// Stack: 9|4|237|5|556|15
// Max: 556
//
// Pop: 15
// Pop: 556
//
// Stack: 9|4|237|5
// Max: 237
//
// Pop: 5
// Pop: 237
//
// Stack: 9|4
// Max: 9
0 голосов
/ 24 января 2014
public class MinStack<E>{

    private final LinkedList<E> mainStack = new LinkedList<E>();
    private final LinkedList<E> minStack = new LinkedList<E>();
    private final Comparator<E> comparator;

    public MinStack(Comparator<E> comparator) 
    {
        this.comparator = comparator;
    }

    /**
     * Pushes an element onto the stack.
     *
     *
     * @param e the element to push
     */
    public void push(E e) {
        mainStack.push(e);
        if(minStack.isEmpty())
        {
            minStack.push(e);
        }
        else if(comparator.compare(e, minStack.peek())<=0)
        {
            minStack.push(e);
        }
        else
        {
            minStack.push(minStack.peek());
        }
    }

    /**
     * Pops an element from the stack.
     *
     *
     * @throws NoSuchElementException if this stack is empty
     */
    public E pop() {
       minStack.pop();
       return  mainStack.pop();
    }

    /**
     * Returns but not remove smallest element from the stack. Return null if stack is empty.
     *
     */
    public E getMinimum()
    {
        return minStack.peek();
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("Main stack{");
        for (E e : mainStack) {         
            sb.append(e.toString()).append(",");
        }
        sb.append("}");

        sb.append(" Min stack{");
        for (E e : minStack) {          
            sb.append(e.toString()).append(",");
        }
        sb.append("}");

        sb.append(" Minimum = ").append(getMinimum());
        return sb.toString();
    }

    public static void main(String[] args) {
        MinStack<Integer> st = new MinStack<Integer>(Comparators.INTEGERS);

        st.push(2);
        Assert.assertTrue("2 is min in stack {2}", st.getMinimum().equals(2));
        System.out.println(st);

        st.push(6);
        Assert.assertTrue("2 is min in stack {2,6}", st.getMinimum().equals(2));
        System.out.println(st);

        st.push(4);
        Assert.assertTrue("2 is min in stack {2,6,4}", st.getMinimum().equals(2));
        System.out.println(st);

        st.push(1);
        Assert.assertTrue("1 is min in stack {2,6,4,1}", st.getMinimum().equals(1));
        System.out.println(st);

        st.push(5);
        Assert.assertTrue("1 is min in stack {2,6,4,1,5}", st.getMinimum().equals(1));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("1 is min in stack {2,6,4,1}", st.getMinimum().equals(1));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("2 is min in stack {2,6,4}", st.getMinimum().equals(2));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("2 is min in stack {2,6}", st.getMinimum().equals(2));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("2 is min in stack {2}", st.getMinimum().equals(2));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("null is min in stack {}", st.getMinimum()==null);
        System.out.println(st);
    }
}
0 голосов
/ 30 апреля 2018

Увидел блестящее решение здесь: https://www.geeksforgeeks.org/design-a-stack-that-supports-getmin-in-o1-time-and-o1-extra-space/

Ниже приведен код Python, который я написал по следующему алгоритму:

class Node:
    def __init__(self, value):
        self.value = value
        self.next = None

class MinStack:
    def __init__(self):
        self.head = None
        self.min = float('inf')

    # @param x, an integer
    def push(self, x):
        if self.head == None:
            self.head = Node(x)
            self.min = x
        else:
            if x >= self.min:
                n = Node(x)
                n.next = self.head
                self.head = n
            else:
                v = 2 * x - self.min
                n = Node(v)
                n.next = self.head
                self.head = n
                self.min = x

    # @return nothing
    def pop(self):
        if self.head:
            if self.head.value < self.min:
                self.min = self.min * 2 - self.head.value
            self.head = self.head.next

    # @return an integer
    def top(self):
        if self.head:
            if self.head.value < self.min:
                self.min = self.min * 2 - self.head.value
                return self.min
            else:
                return self.head.value
        else:
            return -1

    # @return an integer
    def getMin(self):
        if self.head:
            return self.min
        else:
            return -1
0 голосов
/ 26 марта 2009

Вот мой вариант реализации.

 struct MyStack {
    int element;
    int *CurrentMiniAddress;
 };

 void Push(int value)
 {
    // Create you structure and populate the value
    MyStack S = new MyStack();
    S->element = value;

    if(Stack.Empty())
    {    
        // Since the stack is empty, point CurrentMiniAddress to itself
        S->CurrentMiniAddress = S;

    }
    else
    {
         // Stack is not empty

         // Retrieve the top element. No Pop()
         MyStack *TopElement = Stack.Top();

         // Remember Always the TOP element points to the
         // minimum element in ths whole stack
         if (S->element CurrentMiniAddress->element)
         {
            // If the current value is the minimum in the whole stack
            // then S points to itself
            S->CurrentMiniAddress = S;
         }
             else
             {
                 // So this is not the minimum in the whole stack
                 // No worries, TOP is holding the minimum element
                 S->CurrentMiniAddress = TopElement->CurrentMiniAddress;
             }

    }
        Stack.Add(S);
 }

 void Pop()
 {
     if(!Stack.Empty())
     {
        Stack.Pop();
     }  
 }

 int GetMinimum(Stack &stack)
 {
       if(!stack.Empty())
       {
            MyStack *Top  = stack.top();
            // Top always points to the minimumx
            return  Top->CurrentMiniAddress->element;
        }
 }
0 голосов
/ 05 мая 2019

Давайте предположим, что стек, над которым мы будем работать, такой:

6 , minvalue=2
2 , minvalue=2
5 , minvalue=3
3 , minvalue=3
9 , minvalue=7
7 , minvalue=7
8 , minvalue=8

В вышеприведенном представлении стек строится только из левого значения, а правое значение [minvalue] записывается только в целях иллюстрации, которое будет храниться в одной переменной.

Фактическая проблема заключается в том, что когда значение, являющееся минимальным значением get, удаляется в этот момент, как мы можем узнать, каков следующий минимальный элемент, без итерации по стеку.

Как, например, в нашем стеке, когда 6 get выскочили, мы знаем, что это не минимальный элемент, потому что минимальный элемент равен 2, поэтому мы можем безопасно удалить его, не обновляя наше минимальное значение.

Но когда мы выскакиваем 2, мы можем видеть, что минимальное значение равно 2 прямо сейчас, и если этот get выскочил, нам нужно обновить минимальное значение до 3.

Point1:

Теперь, если вы внимательно посмотрите, нам нужно сгенерировать minvalue = 3 из этого конкретного состояния [2, minvalue = 2]. или если вы углубитесь в стек, нам нужно сгенерировать minvalue = 7 из этого конкретного состояния [3, minvalue = 3] или если вы углубитесь в стек, то нам нужно сгенерировать minvalue = 8 из этого конкретного состояния [7, minvalue = 7]

Заметили ли вы что-то общее во всех вышеупомянутых 3 случаях, значение, которое нам нужно сгенерировать, зависит от двух переменных, которые оба равны. Правильный. Почему это происходит, потому что, когда мы помещаем какой-то элемент меньше текущего минимального значения, тогда мы в основном помещаем этот элемент в стек и обновляем также то же число в минимальном значении.

Point2:

Таким образом, мы в основном храним дубликаты одного и того же числа один раз в стеке и один раз в переменной минимального значения. Нам нужно сосредоточиться на том, чтобы избежать этого дублирования и хранить что-то полезное в стеке или в минимальном значении, чтобы сгенерировать предыдущий минимум, как показано в CASES выше.

Давайте сосредоточимся на том, что мы должны хранить в стеке, когда значение для сохранения в push меньше, чем minmumvalue. Давайте назовем эту переменную y, так что теперь наш стек будет выглядеть примерно так:

6 , minvalue=2
y1 , minvalue=2
5 , minvalue=3
y2 , minvalue=3
9 , minvalue=7
y3 , minvalue=7
8 , minvalue=8

Я переименовал их в y1, y2, y3, чтобы избежать путаницы, что все они будут иметь одинаковое значение.

Point3:

Теперь давайте попробуем найти некоторые ограничения для y1, y2 и y3. Помните ли вы, когда именно нам нужно обновить minvalue при выполнении pop (), только когда мы выдвинули элемент, равный minvalue. Если мы добавляем что-то большее, чем minvalue, нам не нужно обновлять minvalue. Таким образом, чтобы вызвать обновление minvalue, y1, y2 & y3 должны быть меньше, чем соответствующее minvalue. [Мы избегаем дублирования, чтобы избежать дублирования [Point2]] поэтому ограничение [y

Теперь давайте вернемся к заполнению y, нам нужно сгенерировать какое-то значение и поставить y во время нажатия, запомните. Давайте возьмем значение, которое придет для push, равным x, которое меньше значения prevMinvalue, и значение, которое мы фактически вставим в стек, равным y. Таким образом, очевидно, что newMinValue = x, а y

Теперь нам нужно вычислить y (помните, что y может быть любым числом, которое меньше newMinValue (x), поэтому нам нужно найти некоторое число, которое может удовлетворить наше ограничение) с помощью prevMinvalue и x (newMinvalue).

Let's do the math:
    x < prevMinvalue [Given]
    x - prevMinvalue < 0 
    x - prevMinValue + x < 0 + x [Add x on both side]
    2*x - prevMinValue < x      
this is the y which we were looking for less than x(newMinValue).
y = 2*x - prevMinValue. 'or' y = 2*newMinValue - prevMinValue 'or' y = 2*curMinValue - prevMinValue [taking curMinValue=newMinValue].

Таким образом, во время нажатия x, если оно меньше значения prevMinvalue, мы нажимаем y [2 * x-prevMinValue] и обновляем newMinValue = x.

И во время всплывающего окна, если в стеке содержится что-то меньшее minValue, это наш триггер для обновления minVAlue. Мы должны вычислить prevMinValue из curMinValue и y. y = 2 * curMinValue - prevMinValue [Доказано] prevMinVAlue = 2 * curMinvalue - y.

2 * curMinValue - y - это число, которое нам нужно обновить сейчас до prevMinValue.

Код для той же логики представлен ниже с O (1) временем и O (1) пространственной сложностью.

// C++ program to implement a stack that supports 
// getMinimum() in O(1) time and O(1) extra space. 
#include <bits/stdc++.h> 
using namespace std; 

// A user defined stack that supports getMin() in 
// addition to push() and pop() 
struct MyStack 
{ 
    stack<int> s; 
    int minEle; 

    // Prints minimum element of MyStack 
    void getMin() 
    { 
        if (s.empty()) 
            cout << "Stack is empty\n"; 

        // variable minEle stores the minimum element 
        // in the stack. 
        else
            cout <<"Minimum Element in the stack is: "
                 << minEle << "\n"; 
    } 

    // Prints top element of MyStack 
    void peek() 
    { 
        if (s.empty()) 
        { 
            cout << "Stack is empty "; 
            return; 
        } 

        int t = s.top(); // Top element. 

        cout << "Top Most Element is: "; 

        // If t < minEle means minEle stores 
        // value of t. 
        (t < minEle)? cout << minEle: cout << t; 
    } 

    // Remove the top element from MyStack 
    void pop() 
    { 
        if (s.empty()) 
        { 
            cout << "Stack is empty\n"; 
            return; 
        } 

        cout << "Top Most Element Removed: "; 
        int t = s.top(); 
        s.pop(); 

        // Minimum will change as the minimum element 
        // of the stack is being removed. 
        if (t < minEle) 
        { 
            cout << minEle << "\n"; 
            minEle = 2*minEle - t; 
        } 

        else
            cout << t << "\n"; 
    } 

    // Removes top element from MyStack 
    void push(int x) 
    { 
        // Insert new number into the stack 
        if (s.empty()) 
        { 
            minEle = x; 
            s.push(x); 
            cout <<  "Number Inserted: " << x << "\n"; 
            return; 
        } 

        // If new number is less than minEle 
        if (x < minEle) 
        { 
            s.push(2*x - minEle); 
            minEle = x; 
        } 

        else
           s.push(x); 

        cout <<  "Number Inserted: " << x << "\n"; 
    } 
}; 

// Driver Code 
int main() 
{ 
    MyStack s; 
    s.push(3); 
    s.push(5); 
    s.getMin(); 
    s.push(2); 
    s.push(1); 
    s.getMin(); 
    s.pop(); 
    s.getMin(); 
    s.pop(); 
    s.peek(); 

    return 0; 
} 
0 голосов
/ 21 августа 2015
 class MyStackImplementation{
private final int capacity = 4;
int min;
int arr[] = new int[capacity];
int top = -1;

public void push ( int val ) {
top++;
if(top <= capacity-1){
    if(top == 0){
min = val;
arr[top] = val;
}
else if(val < min){
arr[top] = arr[top]+min;
min = arr[top]-min;
arr[top] = arr[top]-min;
}
else {
arr[top] = val;
}
System.out.println("element is pushed");
}
else System.out.println("stack is full");

}

 public void pop () {
top--;
   if(top > -1){ 

   min = arr[top];
}
else {min=0; System.out.println("stack is under flow");}

}
public int min(){
return min;
}

 public boolean isEmpty () {
    return top == 0;
}

public static void main(String...s){
MyStackImplementation msi = new MyStackImplementation();
msi.push(1);
msi.push(4);
msi.push(2);
msi.push(10);
System.out.println(msi.min);
msi.pop();
msi.pop();
msi.pop();
msi.pop();
msi.pop();
System.out.println(msi.min);

}
}
...