Можно ли напечатать тип переменной в стандартном C ++? - PullRequest
323 голосов
/ 17 сентября 2008

Например:

int a = 12;
cout << typeof(a) << endl;

Ожидаемый результат:

int

Ответы [ 16 ]

4 голосов
/ 29 февраля 2016

Вы также можете использовать c ++ Filter с опцией -t (type), чтобы удалить имя типа:

#include <iostream>
#include <typeinfo>
#include <string>

using namespace std;

int main() {
  auto x = 1;
  string my_type = typeid(x).name();
  system(("echo " + my_type + " | c++filt -t").c_str());
  return 0;
}

Проверено только на Linux.

4 голосов
/ 14 марта 2015

Более общее решение без перегрузки функций, чем мое предыдущее:

template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";

    return Type;}

Здесь MyClass - определенный пользователем класс. Здесь также можно добавить больше условий.

Пример:

#include <iostream>



class MyClass{};


template<typename T>
std::string TypeOf(T){
    std::string Type="unknown";
    if(std::is_same<T,int>::value) Type="int";
    if(std::is_same<T,std::string>::value) Type="String";
    if(std::is_same<T,MyClass>::value) Type="MyClass";
    return Type;}


int main(){;
    int a=0;
    std::string s="";
    MyClass my;
    std::cout<<TypeOf(a)<<std::endl;
    std::cout<<TypeOf(s)<<std::endl;
    std::cout<<TypeOf(my)<<std::endl;

    return 0;}

Выход:

int
String
MyClass
4 голосов
/ 13 марта 2015

Мне нравится метод Ника, полная форма может быть такой (для всех основных типов данных):

template <typename T> const char* typeof(T&) { return "unknown"; }    // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }
3 голосов
/ 17 августа 2017

Когда я бросил вызов, я решил проверить, насколько далеко можно продвинуться с независящим от платформы (надеемся) обманом шаблона.

Имена полностью собраны во время компиляции. (Это означает, что typeid(T).name() нельзя использовать, поэтому вы должны явно указать имена для несоставных типов. В противном случае вместо них будут отображаться заполнители.)

Пример использования:

TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.

TYPE_NAME(std::string)

int main()
{
    // A simple case
    std::cout << type_name<void(*)(int)> << '\n';
    // -> `void (*)(int)`

    // Ugly mess case
    // Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
    std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
    // -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`

    // A case with undefined types
    //  If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
    std::cout << type_name<std::ostream (*)(int, short)> << '\n';
    // -> `class? (*)(int,??)`
    // With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}

Код:

#include <type_traits>
#include <utility>

static constexpr std::size_t max_str_lit_len = 256;

template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
    if constexpr(I < N)
        return str[I];
    else
        return '\0';
}

constexpr std::size_t sl_len(const char *str)
{
    for (std::size_t i = 0; i < max_str_lit_len; i++)
        if (str[i] == '\0')
            return i;
    return 0;
}

template <char ...C> struct str_lit
{
    static constexpr char value[] {C..., '\0'};
    static constexpr int size = sl_len(value);

    template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
    template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
    template <typename ...P> using concat = typename concat_impl<P...>::type;
};

template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
    using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;

#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)

template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
    return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}

template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
    static constexpr auto func()
    {
        if constexpr (N >= cexpr_pow<10,X>::value)
            return num_to_str_lit_impl<N, X+1>::func();
        else
            return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
    }
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());


using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;

using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;

template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;

template <typename T> struct primitive_type_name {using value = unk;};

template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum  = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};

template <typename T> struct type_name_impl;

template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
                                                                               typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
                                            typename primitive_type_name<T>::value,
                                            typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;

template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;

template <typename T> struct type_name_impl
{
    using l = typename primitive_type_name<T>::value::template concat<spa>;
    using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con>,
                                 con::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<vol>,
                                 vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
    using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
                                       spa::concat<typename type_name_impl<T>::l>,
                                       typename type_name_impl<T>::l>;
    using l = std::conditional_t<ptr_or_ref<T>,
                                 typename new_T_l::template concat<con_vol>,
                                 con_vol::concat<new_T_l>>;
    using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, ast>,
                                 typename type_name_impl<T>::l::template concat<     ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
                                 typename type_name_impl<T>::l::template concat<     amp, amp>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
    using l = std::conditional_t<func_or_arr<T>,
                                 typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
                                 typename type_name_impl<T>::l::template concat<     type_name_lit<C>, nsp, ast>>;
    using r = std::conditional_t<func_or_arr<T>,
                                 rpa::concat<typename type_name_impl<T>::r>,
                                             typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
    using l = typename type_name_impl<T>::l;
    using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
    using l = typename type_name_impl<T>::l;
    using r = lpa::concat<type_name_lit<P1>,
                          com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};

#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};
1 голос
/ 02 августа 2017
#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
    system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())

int main() {
    auto a = {"one", "two", "three"};
    cout << "Type of a: " << typeid(a).name() << endl;
    cout << "Real type of a:\n";
    show_type_name(a);
    for (auto s : a) {
        if (string(s) == "one") {
            cout << "Type of s: " << typeid(s).name() << endl;
            cout << "Real type of s:\n";
            show_type_name(s);
        }
        cout << s << endl;
    }

    int i = 5;
    cout << "Type of i: " << typeid(i).name() << endl;
    cout << "Real type of i:\n";
    show_type_name(i);
    return 0;
}

Выход:

Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int
0 голосов
/ 05 июня 2019

Как объяснил Скотт Мейерс в Effective Modern C ++,

Звонки на std::type_info::name не гарантированно возвращают что-либо разумное.

Лучшее решение - позволить компилятору сгенерировать сообщение об ошибке во время вывода типа, например,

template<typename T>
class TD;

int main(){
    const int theAnswer = 32;
    auto x = theAnswer;
    auto y = &theAnswer;
    TD<decltype(x)> xType;
    TD<decltype(y)> yType;
    return 0;
}

Результат будет примерно таким, в зависимости от компиляторов,

test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;

test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;

Следовательно, мы узнаем, что тип x равен int, тип y равен const int*

...