Для двумерных данных SciPy's griddata
работает довольно хорошо для меня:
>>> import numpy as np
>>> from scipy.interpolate import griddata
>>>
>>> # SETUP
>>> a = np.arange(25).reshape((5, 5)).astype(float)
>>> a
array([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24.]])
>>> a[np.random.randint(2, size=(5, 5)).astype(bool)] = np.NaN
>>> a
array([[ nan, nan, nan, 3., 4.],
[ nan, 6., 7., nan, nan],
[ 10., nan, nan, 13., nan],
[ 15., 16., 17., nan, 19.],
[ nan, nan, 22., 23., nan]])
>>>
>>> # THE INTERPOLATION
>>> x, y = np.indices(a.shape)
>>> interp = np.array(a)
>>> interp[np.isnan(interp)] = griddata(
... (x[~np.isnan(a)], y[~np.isnan(a)]), # points we know
... a[~np.isnan(a)], # values we know
... (x[np.isnan(a)], y[np.isnan(a)])) # points to interpolate
>>> interp
array([[ nan, nan, nan, 3., 4.],
[ nan, 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ nan, nan, 22., 23., nan]])
Я использую его на 3D-изображениях, работая на 2D-срезах (4000 срезов 350x350). Вся операция по-прежнему занимает около часа: /