У меня есть датафрейм с длинами и ширинами различных членистоногих из кишок саламандр.Поскольку у некоторых кишок были тысячи определенных предметов добычи, я измерил только подмножество каждого типа добычи.Теперь я хочу заменить каждого немеренного человека средней длиной и шириной для этой добычи.Я хочу сохранить датафрейм и просто добавить вмененные столбцы (длина2, ширина2).Основная причина в том, что в каждой строке также есть столбцы с данными о дате и месте сбора саламандры.Я мог бы заполнить NA случайным выбором измеренных индивидуумов, но ради аргумента давайте предположим, что я просто хочу заменить каждое NA средним значением.
Например, представьте, что у меня есть кадр данных, который выглядит примерно так::
id taxa length width
101 collembola 2.1 0.9
102 mite 0.9 0.7
103 mite 1.1 0.8
104 collembola NA NA
105 collembola 1.5 0.5
106 mite NA NA
На самом деле у меня есть больше столбцов и около 25 различных таксонов и в общей сложности ~ 30 000 предметов для добычи.Кажется, пакет plyr может быть идеальным для этого, но я просто не могу понять, как это сделать.Я не очень хорошо разбираюсь в программировании или программировании, но пытаюсь учиться.
Не то, чтобы я знал, что делаю, но я постараюсь создать небольшой набор данных, с которым можно поиграть, если это поможет.
exampleDF <- data.frame(id = seq(1:100), taxa = c(rep("collembola", 50), rep("mite", 25),
rep("ant", 25)), length = c(rnorm(40, 1, 0.5), rep("NA", 10), rnorm(20, 0.8, 0.1), rep("NA",
5), rnorm(20, 2.5, 0.5), rep("NA", 5)), width = c(rnorm(40, 0.5, 0.25), rep("NA", 10),
rnorm(20, 0.3, 0.01), rep("NA", 5), rnorm(20, 1, 0.1), rep("NA", 5)))
Вот несколько вещей, которые я пробовал (которые не сработали):
# mean imputation to recode NA in length and width with means
(could do random imputation but unnecessary here)
mean.imp <- function(x) {
missing <- is.na(x)
n.missing <-sum(missing)
x.obs <-a[!missing]
imputed <- x
imputed[missing] <- mean(x.obs)
return (imputed)
}
mean.imp(exampleDF[exampleDF$taxa == "collembola", "length"])
n.taxa <- length(unique(exampleDF$taxa))
for(i in 1:n.taxa) {
mean.imp(exampleDF[exampleDF$taxa == unique(exampleDF$taxa[i]), "length"])
} # no way to get back into dataframe in proper places, try plyr?
еще одна попытка:
imp.mean <- function(x) {
a <- mean(x, na.rm = TRUE)
return (ifelse (is.na(x) == TRUE , a, x))
} # tried but not sure how to use this in ddply
Diet2 <- ddply(exampleDF, .(taxa), transform, length2 = function(x) {
a <- mean(exampleDF$length, na.rm = TRUE)
return (ifelse (is.na(exampleDF$length) == TRUE , a, exampleDF$length))
})
Любые предложения с использованием plyrили нет?