Наиболее популярными решениями этой проблемы являются алгоритм Ричардса и алгоритм Штерна-Брокота , реализованный с помощью btilly с оптимизацией скорости с помощью btilly и Jay Zed,Алгоритм Ричардса является самым быстрым, но он не гарантирует возврата лучшей дроби.
У меня есть решение этой проблемы, которое всегда дает лучшую дробь, а также работает быстрее, чем все вышеперечисленные алгоритмы.Вот алгоритм на C # (объяснение и тест скорости ниже).
Это короткий алгоритм без комментариев.Полная версия приведена в исходном коде в конце.
public static Fraction DoubleToFractionSjaak(double value, double accuracy)
{
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
int a = 0;
int b = 1;
int c = 1;
int d = (int)(1 / maximumvalue);
while (true)
{
int n = (int)((b * minimalvalue - a) / (c - d * minimalvalue));
if (n == 0) break;
a += n * c;
b += n * d;
n = (int)((c - d * maximumvalue) / (b * maximumvalue - a));
if (n == 0) break;
c += n * a;
d += n * b;
}
int denominator = b + d;
return new Fraction(sign * (integerpart * denominator + (a + c)), denominator);
}
Где Fraction - простой класс для хранения дроби, например:
public class Fraction
{
public int Numerator { get; private set; }
public int Denominator { get; private set; }
public Fraction(int numerator, int denominator)
{
Numerator = numerator;
Denominator = denominator;
}
}
Howэто работает
Как и другие упомянутые решения, мое решение основано на непрерывной дроби.Другие решения, такие как решение Eppstein или решения, основанные на повторяющихся десятичных числах, оказались медленнее и / или дают субоптимальные результаты.
Продолжение дроби
Решения на основенепрерывная дробь в основном основана на двух алгоритмах, оба описаны в статье Иана Ричардса, опубликованной здесь в 1981 году. Он назвал их «алгоритм медленной непрерывной дроби» и «алгоритм быстрой непрерывной дроби».Первый известен как алгоритм Штерна-Броко, а второй известен как алгоритм Ричардса.
Мой алгоритм (краткое объяснение)
Чтобы полностью понять мой алгоритм, вам нужночтобы прочитать статью Яна Ричардса или хотя бы понять, что такое пара Фэри.Кроме того, прочитайте алгоритм с комментариями в конце этой статьи.
Алгоритм использует пару Фари, содержащую левую и правую дроби.Повторно принимая посредник, он приближается к целевому значению.Это подобно медленному алгоритму, но есть два основных различия:
- Несколько итераций выполняются одновременно, пока посредник остается на одной стороне от целевого значения.
- Левая и правая дроби не могут быть ближе к целевому значению, чем заданная точность.
Поочередно проверяются правая и левая сторона целевого значения.Если алгоритм не может дать результат ближе к целевому значению, процесс заканчивается.Полученный в результате медиант является оптимальным решением.
Тест скорости
Я провел несколько тестов скорости на своем ноутбуке с использованием следующих алгоритмов:
- Улучшен алгоритм замедления с помощью Kay Zed и btilly
- Реализация алгоритма Fast Джона Кеннеди, преобразованная в C # с помощью Kay Zed
- Моя реализация алгоритма Fast (близко коригинал Иана Ричардса)
- Реализация алгоритма быстрого алгоритма Джереми Херрмана
- Мой алгоритм выше
Я опустил исходный алгоритм медленного алгоритма с помощью btilly из-за его плохой производительности в худшем случае.
Набор тестов
Я выбираю набор целевых значений (очень произвольно) и вычисляю дробь 100000 разс 5 разными точностями.Поскольку некоторые (будущие) алгоритмы не могли обрабатывать неправильные дроби, были протестированы только целевые значения от 0,0 до 1,0.Точность была взята из диапазона от 2 до 6 знаков после запятой (от 0,005 до 0,0000005).Использовался следующий набор:
0.999999, 0.000001, 0.25
0.33, 0.333, 0.3333, 0.33333, 0.333333, 0.333333333333,
0.666666666666, 0.777777777777, 0.090909090909, 0.263157894737,
0.606557377049, 0.745454545454, 0.000050183168565,
pi - 3, e - 2.0, sqrt(2) - 1
Результаты
Я сделал 13 тестовых прогонов.Результат в миллисекундах, необходимых для всего набора данных.
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run 11 Run 12 Run 13
1. 9091 9222 9070 9111 9091 9108 9293 9118 9115 9113 9102 9143 9121
2. 7071 7125 7077 6987 7126 6985 7037 6964 7023 6980 7053 7050 6999
3. 6903 7059 7062 6891 6942 6880 6882 6918 6853 6918 6893 6993 6966
4. 7546 7554 7564 7504 7483 7529 7510 7512 7517 7719 7513 7520 7514
5. 6839 6951 6882 6836 6854 6880 6846 7017 6874 6867 6828 6848 6864
Заключение (пропуская анализ)
Даже без статистического анализа легко увидеть, что мой алгоритмбыстрее, чем другие проверенные алгоритмы.Однако разница с самым быстрым вариантом «быстрого алгоритма» составляет менее 1%.Улучшенный медленный алгоритм на 30-35% медленнее, чем самый быстрый алгоритм ».
С другой стороны,даже самый медленный алгоритм выполняет вычисления в среднем менее чем за микросекунду.Таким образом, в нормальных условиях скорость не является проблемой.На мой взгляд, лучший алгоритм - это в основном дело вкуса, поэтому выбирайте любой из протестированных алгоритмов по другим критериям.
- Дает ли алгоритм лучший результат?
- Является ли алгоритмдоступно на моем любимом языке?
- Каков размер кода алгоритма?
- Является ли алгоритм читабельным, понятным?
Исходный код
Исходный код ниже содержит все используемые алгоритмы.Он включает в себя:
- Мой оригинальный алгоритм (с комментариями)
- Еще более быстрая версия моего алгоритма (но менее читаемая)
- Оригинальный медленный алгоритм
- Все проверенные алгоритмы
public class DoubleToFraction
{
// ===================================================
// Sjaak algorithm - original version
//
public static Fraction SjaakOriginal(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// The left fraction (a/b) is initially (0/1), the right fraction (c/d) is initially (1/1)
// Together they form a Farey pair.
// We will keep the left fraction below the minimumvalue and the right fraction above the maximumvalue
int a = 0;
int b = 1;
int c = 1;
int d = (int)(1 / maximumvalue);
// The first interation is performed above. Calculate maximum n where (n*a+c)/(n*b+d) >= maximumvalue
// This is the same as n <= 1/maximumvalue - 1, d will become n+1 = floor(1/maximumvalue)
// repeat forever (at least until we cannot close in anymore)
while (true)
{
// Close in from the left n times.
// Calculate maximum n where (a+n*c)/(b+n*d) <= minimalvalue
// This is the same as n <= (b * minimalvalue - a) / (c-d*minimalvalue)
int n = (int)((b * minimalvalue - a) / (c - d * minimalvalue));
// If we cannot close in from the left (and also not from the right anymore) the loop ends
if (n == 0) break;
// Update left fraction
a += n * c;
b += n * d;
// Close in from the right n times.
// Calculate maximum n where (n*a+c)/(n*b+d) >= maximumvalue
// This is the same as n <= (c - d * maximumvalue) / (b * maximumvalue - a)
n = (int)((c - d * maximumvalue) / (b * maximumvalue - a));
// If we cannot close in from the right (and also not from the left anymore) the loop ends
if (n == 0) break;
// Update right fraction
c += n * a;
d += n * b;
}
// We cannot close in anymore
// The best fraction will be the mediant of the left and right fraction = (a+c)/(b+d)
int denominator = b + d;
return new Fraction(sign * (integerpart * denominator + (a + c)), denominator);
}
// ===================================================
// Sjaak algorithm - faster version
//
public static Fraction SjaakFaster(double value, double accuracy)
{
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
//int a = 0;
int b = 1;
//int c = 1;
int d = (int)(1 / maximumvalue);
double left_n = minimalvalue; // b * minimalvalue - a
double left_d = 1.0 - d * minimalvalue; // c - d * minimalvalue
double right_n = 1.0 - d * maximumvalue; // c - d * maximumvalue
double right_d = maximumvalue; // b * maximumvalue - a
while (true)
{
if (left_n < left_d) break;
int n = (int)(left_n / left_d);
//a += n * c;
b += n * d;
left_n -= n * left_d;
right_d -= n * right_n;
if (right_n < right_d) break;
n = (int)(right_n / right_d);
//c += n * a;
d += n * b;
left_d -= n * left_n;
right_n -= n * right_d;
}
int denominator = b + d;
int numerator = (int)(value * denominator + 0.5);
return new Fraction(sign * (integerpart * denominator + numerator), denominator);
}
// ===================================================
// Original Farley - Implemented by btilly
//
public static Fraction OriginalFarley(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// The lower fraction is 0/1
int lower_numerator = 0;
int lower_denominator = 1;
// The upper fraction is 1/1
int upper_numerator = 1;
int upper_denominator = 1;
while (true)
{
// The middle fraction is (lower_numerator + upper_numerator) / (lower_denominator + upper_denominator)
int middle_numerator = lower_numerator + upper_numerator;
int middle_denominator = lower_denominator + upper_denominator;
if (middle_denominator * maximumvalue < middle_numerator)
{
// real + error < middle : middle is our new upper
upper_numerator = middle_numerator;
upper_denominator = middle_denominator;
}
else if (middle_numerator < minimalvalue * middle_denominator)
{
// middle < real - error : middle is our new lower
lower_numerator = middle_numerator;
lower_denominator = middle_denominator;
}
else
{
return new Fraction(sign * (integerpart * middle_denominator + middle_numerator), middle_denominator);
}
}
}
// ===================================================
// Modified Farley - Implemented by btilly, Kay Zed
//
public static Fraction ModifiedFarley(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// The lower fraction is 0/1
int lower_numerator = 0;
int lower_denominator = 1;
// The upper fraction is 1/1
int upper_numerator = 1;
int upper_denominator = 1;
while (true)
{
// The middle fraction is (lower_numerator + upper_numerator) / (lower_denominator + upper_denominator)
int middle_numerator = lower_numerator + upper_numerator;
int middle_denominator = lower_denominator + upper_denominator;
if (middle_denominator * maximumvalue < middle_numerator)
{
// real + error < middle : middle is our new upper
ModifiedFarleySeek(ref upper_numerator, ref upper_denominator, lower_numerator, lower_denominator, (un, ud) => (lower_denominator + ud) * maximumvalue < (lower_numerator + un));
}
else if (middle_numerator < minimalvalue * middle_denominator)
{
// middle < real - error : middle is our new lower
ModifiedFarleySeek(ref lower_numerator, ref lower_denominator, upper_numerator, upper_denominator, (ln, ld) => (ln + upper_numerator) < minimalvalue * (ld + upper_denominator));
}
else
{
return new Fraction(sign * (integerpart * middle_denominator + middle_numerator), middle_denominator);
}
}
}
private static void ModifiedFarleySeek(ref int a, ref int b, int ainc, int binc, Func<int, int, bool> f)
{
// Binary seek for the value where f() becomes false
a += ainc;
b += binc;
if (f(a, b))
{
int weight = 1;
do
{
weight *= 2;
a += ainc * weight;
b += binc * weight;
}
while (f(a, b));
do
{
weight /= 2;
int adec = ainc * weight;
int bdec = binc * weight;
if (!f(a - adec, b - bdec))
{
a -= adec;
b -= bdec;
}
}
while (weight > 1);
}
}
// ===================================================
// Richards implementation by Jemery Hermann
//
public static Fraction RichardsJemeryHermann(double value, double accuracy, int maxIterations = 20)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// Richards - Implemented by Jemery Hermann
double[] d = new double[maxIterations + 2];
d[1] = 1;
double z = value;
double n = 1;
int t = 1;
while (t < maxIterations && Math.Abs(n / d[t] - value) > accuracy)
{
t++;
z = 1 / (z - (int)z);
d[t] = d[t - 1] * (int)z + d[t - 2];
n = (int)(value * d[t] + 0.5);
}
return new Fraction(sign * (integerpart * (int)d[t] + (int)n), (int)d[t]);
}
// ===================================================
// Richards implementation by Kennedy
//
public static Fraction RichardsKennedy(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// Richards
double z = value;
int previousDenominator = 0;
int denominator = 1;
int numerator;
do
{
z = 1.0 / (z - (int)z);
int temp = denominator;
denominator = denominator * (int)z + previousDenominator;
previousDenominator = temp;
numerator = (int)(value * denominator + 0.5);
}
while (Math.Abs(value - (double)numerator / denominator) > accuracy && z != (int)z);
return new Fraction(sign * (integerpart * denominator + numerator), denominator);
}
// ===================================================
// Richards implementation by Sjaak
//
public static Fraction RichardsOriginal(double value, double accuracy)
{
// Split value in a sign, an integer part, a fractional part
int sign = value < 0 ? -1 : 1;
value = value < 0 ? -value : value;
int integerpart = (int)value;
value -= integerpart;
// check if the fractional part is near 0
double minimalvalue = value - accuracy;
if (minimalvalue < 0.0) return new Fraction(sign * integerpart, 1);
// check if the fractional part is near 1
double maximumvalue = value + accuracy;
if (maximumvalue > 1.0) return new Fraction(sign * (integerpart + 1), 1);
// Richards
double z = value;
int denominator0 = 0;
int denominator1 = 1;
int numerator0 = 1;
int numerator1 = 0;
int n = (int)z;
while (true)
{
z = 1.0 / (z - n);
n = (int)z;
int temp = denominator1;
denominator1 = denominator1 * n + denominator0;
denominator0 = temp;
temp = numerator1;
numerator1 = numerator1 * n + numerator0;
numerator0 = temp;
double d = (double)numerator1 / denominator1;
if (d > minimalvalue && d < maximumvalue) break;
}
return new Fraction(sign * (integerpart * denominator1 + numerator1), denominator1);
}
}