Хорошо, вот что я придумал для структуры с фиксированной запятой, основанной на ссылке в моем исходном вопросе, но также включающей некоторые исправления того, как она обрабатывает деление и умножение, и добавила логику для модулей, сравнений, смены и т.д:
public struct FInt
{
public long RawValue;
public const int SHIFT_AMOUNT = 12; //12 is 4096
public const long One = 1 << SHIFT_AMOUNT;
public const int OneI = 1 << SHIFT_AMOUNT;
public static FInt OneF = FInt.Create( 1, true );
#region Constructors
public static FInt Create( long StartingRawValue, bool UseMultiple )
{
FInt fInt;
fInt.RawValue = StartingRawValue;
if ( UseMultiple )
fInt.RawValue = fInt.RawValue << SHIFT_AMOUNT;
return fInt;
}
public static FInt Create( double DoubleValue )
{
FInt fInt;
DoubleValue *= (double)One;
fInt.RawValue = (int)Math.Round( DoubleValue );
return fInt;
}
#endregion
public int IntValue
{
get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
}
public int ToInt()
{
return (int)( this.RawValue >> SHIFT_AMOUNT );
}
public double ToDouble()
{
return (double)this.RawValue / (double)One;
}
public FInt Inverse
{
get { return FInt.Create( -this.RawValue, false ); }
}
#region FromParts
/// <summary>
/// Create a fixed-int number from parts. For example, to create 1.5 pass in 1 and 500.
/// </summary>
/// <param name="PreDecimal">The number above the decimal. For 1.5, this would be 1.</param>
/// <param name="PostDecimal">The number below the decimal, to three digits.
/// For 1.5, this would be 500. For 1.005, this would be 5.</param>
/// <returns>A fixed-int representation of the number parts</returns>
public static FInt FromParts( int PreDecimal, int PostDecimal )
{
FInt f = FInt.Create( PreDecimal, true );
if ( PostDecimal != 0 )
f.RawValue += ( FInt.Create( PostDecimal ) / 1000 ).RawValue;
return f;
}
#endregion
#region *
public static FInt operator *( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT;
return fInt;
}
public static FInt operator *( FInt one, int multi )
{
return one * (FInt)multi;
}
public static FInt operator *( int multi, FInt one )
{
return one * (FInt)multi;
}
#endregion
#region /
public static FInt operator /( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue );
return fInt;
}
public static FInt operator /( FInt one, int divisor )
{
return one / (FInt)divisor;
}
public static FInt operator /( int divisor, FInt one )
{
return (FInt)divisor / one;
}
#endregion
#region %
public static FInt operator %( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue ) % ( other.RawValue );
return fInt;
}
public static FInt operator %( FInt one, int divisor )
{
return one % (FInt)divisor;
}
public static FInt operator %( int divisor, FInt one )
{
return (FInt)divisor % one;
}
#endregion
#region +
public static FInt operator +( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue + other.RawValue;
return fInt;
}
public static FInt operator +( FInt one, int other )
{
return one + (FInt)other;
}
public static FInt operator +( int other, FInt one )
{
return one + (FInt)other;
}
#endregion
#region -
public static FInt operator -( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue - other.RawValue;
return fInt;
}
public static FInt operator -( FInt one, int other )
{
return one - (FInt)other;
}
public static FInt operator -( int other, FInt one )
{
return (FInt)other - one;
}
#endregion
#region ==
public static bool operator ==( FInt one, FInt other )
{
return one.RawValue == other.RawValue;
}
public static bool operator ==( FInt one, int other )
{
return one == (FInt)other;
}
public static bool operator ==( int other, FInt one )
{
return (FInt)other == one;
}
#endregion
#region !=
public static bool operator !=( FInt one, FInt other )
{
return one.RawValue != other.RawValue;
}
public static bool operator !=( FInt one, int other )
{
return one != (FInt)other;
}
public static bool operator !=( int other, FInt one )
{
return (FInt)other != one;
}
#endregion
#region >=
public static bool operator >=( FInt one, FInt other )
{
return one.RawValue >= other.RawValue;
}
public static bool operator >=( FInt one, int other )
{
return one >= (FInt)other;
}
public static bool operator >=( int other, FInt one )
{
return (FInt)other >= one;
}
#endregion
#region <=
public static bool operator <=( FInt one, FInt other )
{
return one.RawValue <= other.RawValue;
}
public static bool operator <=( FInt one, int other )
{
return one <= (FInt)other;
}
public static bool operator <=( int other, FInt one )
{
return (FInt)other <= one;
}
#endregion
#region >
public static bool operator >( FInt one, FInt other )
{
return one.RawValue > other.RawValue;
}
public static bool operator >( FInt one, int other )
{
return one > (FInt)other;
}
public static bool operator >( int other, FInt one )
{
return (FInt)other > one;
}
#endregion
#region <
public static bool operator <( FInt one, FInt other )
{
return one.RawValue < other.RawValue;
}
public static bool operator <( FInt one, int other )
{
return one < (FInt)other;
}
public static bool operator <( int other, FInt one )
{
return (FInt)other < one;
}
#endregion
public static explicit operator int( FInt src )
{
return (int)( src.RawValue >> SHIFT_AMOUNT );
}
public static explicit operator FInt( int src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( long src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( ulong src )
{
return FInt.Create( (long)src, true );
}
public static FInt operator <<( FInt one, int Amount )
{
return FInt.Create( one.RawValue << Amount, false );
}
public static FInt operator >>( FInt one, int Amount )
{
return FInt.Create( one.RawValue >> Amount, false );
}
public override bool Equals( object obj )
{
if ( obj is FInt )
return ( (FInt)obj ).RawValue == this.RawValue;
else
return false;
}
public override int GetHashCode()
{
return RawValue.GetHashCode();
}
public override string ToString()
{
return this.RawValue.ToString();
}
}
public struct FPoint
{
public FInt X;
public FInt Y;
public static FPoint Create( FInt X, FInt Y )
{
FPoint fp;
fp.X = X;
fp.Y = Y;
return fp;
}
public static FPoint FromPoint( Point p )
{
FPoint f;
f.X = (FInt)p.X;
f.Y = (FInt)p.Y;
return f;
}
public static Point ToPoint( FPoint f )
{
return new Point( f.X.IntValue, f.Y.IntValue );
}
#region Vector Operations
public static FPoint VectorAdd( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X + F2.X;
result.Y = F1.Y + F2.Y;
return result;
}
public static FPoint VectorSubtract( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X - F2.X;
result.Y = F1.Y - F2.Y;
return result;
}
public static FPoint VectorDivide( FPoint F1, int Divisor )
{
FPoint result;
result.X = F1.X / Divisor;
result.Y = F1.Y / Divisor;
return result;
}
#endregion
}
Судя по комментариям ShuggyCoUk, я вижу, что это в формате Q12. Это достаточно точно для моих целей. Конечно, кроме исправлений, у меня уже был этот базовый формат, прежде чем я задал свой вопрос. Я искал способы вычисления Sqrt, Atan2, Sin и Cos в C # с использованием такой структуры. В C # я не знаю других вещей, которые бы справились с этим, но в Java мне удалось найти библиотеку MathFP от Onno Hommes. Это либеральная лицензия на исходное программное обеспечение, поэтому я преобразовал некоторые из его функций в свои цели в C # (с исправлением atan2, я думаю). Наслаждайтесь:
#region PI, DoublePI
public static FInt PI = FInt.Create( 12868, false ); //PI x 2^12
public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
public static FInt PIOver180F = PI / (FInt)180; //PI / 180
#endregion
#region Sqrt
public static FInt Sqrt( FInt f, int NumberOfIterations )
{
if ( f.RawValue < 0 ) //NaN in Math.Sqrt
throw new ArithmeticException( "Input Error" );
if ( f.RawValue == 0 )
return (FInt)0;
FInt k = f + FInt.OneF >> 1;
for ( int i = 0; i < NumberOfIterations; i++ )
k = ( k + ( f / k ) ) >> 1;
if ( k.RawValue < 0 )
throw new ArithmeticException( "Overflow" );
else
return k;
}
public static FInt Sqrt( FInt f )
{
byte numberOfIterations = 8;
if ( f.RawValue > 0x64000 )
numberOfIterations = 12;
if ( f.RawValue > 0x3e8000 )
numberOfIterations = 16;
return Sqrt( f, numberOfIterations );
}
#endregion
#region Sin
public static FInt Sin( FInt i )
{
FInt j = (FInt)0;
for ( ; i < 0; i += FInt.Create( 25736, false ) ) ;
if ( i > FInt.Create( 25736, false ) )
i %= FInt.Create( 25736, false );
FInt k = ( i * FInt.Create( 10, false ) ) / FInt.Create( 714, false );
if ( i != 0 && i != FInt.Create( 6434, false ) && i != FInt.Create( 12868, false ) &&
i != FInt.Create( 19302, false ) && i != FInt.Create( 25736, false ) )
j = ( i * FInt.Create( 100, false ) ) / FInt.Create( 714, false ) - k * FInt.Create( 10, false );
if ( k <= FInt.Create( 90, false ) )
return sin_lookup( k, j );
if ( k <= FInt.Create( 180, false ) )
return sin_lookup( FInt.Create( 180, false ) - k, j );
if ( k <= FInt.Create( 270, false ) )
return sin_lookup( k - FInt.Create( 180, false ), j ).Inverse;
else
return sin_lookup( FInt.Create( 360, false ) - k, j ).Inverse;
}
private static FInt sin_lookup( FInt i, FInt j )
{
if ( j > 0 && j < FInt.Create( 10, false ) && i < FInt.Create( 90, false ) )
return FInt.Create( SIN_TABLE[i.RawValue], false ) +
( ( FInt.Create( SIN_TABLE[i.RawValue + 1], false ) - FInt.Create( SIN_TABLE[i.RawValue], false ) ) /
FInt.Create( 10, false ) ) * j;
else
return FInt.Create( SIN_TABLE[i.RawValue], false );
}
private static int[] SIN_TABLE = {
0, 71, 142, 214, 285, 357, 428, 499, 570, 641,
711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333,
1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985,
2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577,
2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091,
3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510,
3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823,
3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020,
4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095,
4096
};
#endregion
private static FInt mul( FInt F1, FInt F2 )
{
return F1 * F2;
}
#region Cos, Tan, Asin
public static FInt Cos( FInt i )
{
return Sin( i + FInt.Create( 6435, false ) );
}
public static FInt Tan( FInt i )
{
return Sin( i ) / Cos( i );
}
public static FInt Asin( FInt F )
{
bool isNegative = F < 0;
F = Abs( F );
if ( F > FInt.OneF )
throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );
FInt f1 = mul( mul( mul( mul( FInt.Create( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 26353447 >> FInt.SHIFT_AMOUNT, false );
FInt f2 = PI / FInt.Create( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );
return isNegative ? f2.Inverse : f2;
}
#endregion
#region ATan, ATan2
public static FInt Atan( FInt F )
{
return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
}
public static FInt Atan2( FInt F1, FInt F2 )
{
if ( F2.RawValue == 0 && F1.RawValue == 0 )
return (FInt)0;
FInt result = (FInt)0;
if ( F2 > 0 )
result = Atan( F1 / F2 );
else if ( F2 < 0 )
{
if ( F1 >= 0 )
result = ( PI - Atan( Abs( F1 / F2 ) ) );
else
result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
}
else
result = ( F1 >= 0 ? PI : PI.Inverse ) / FInt.Create( 2, true );
return result;
}
#endregion
#region Abs
public static FInt Abs( FInt F )
{
if ( F < 0 )
return F.Inverse;
else
return F;
}
#endregion
В библиотеке MathFP доктора Хоммеса есть ряд других функций, но они оказались за рамками того, что мне было нужно, и поэтому я не потратил время на их перевод на C # (этот процесс усложнился из-за того, что он использовал long, а я использую структуру FInt, из-за чего правила преобразования немного сложно увидеть сразу).
Точность этих функций, поскольку они здесь закодированы, более чем достаточна для моих целей, но если вам нужно больше, вы можете увеличить СУММУ СДВИГА на FInt. Просто имейте в виду, что если вы сделаете это, константы функций доктора Хоммса нужно будет затем разделить на 4096, а затем умножить на все, что требуется вашей новой сумме SHIFT. Вы, вероятно, столкнетесь с некоторыми ошибками, если будете это делать и не будете осторожны, поэтому обязательно запустите проверку встроенных математических функций, чтобы убедиться, что ваши результаты не откладываются из-за неправильной настройки константы.
Пока что эта логика FInt кажется такой же быстрой, если не чуть более быстрой, чем эквивалентные встроенные функции .net. Очевидно, это будет зависеть от машины, так как сопроцессор fp определит это, поэтому я не проводил конкретные тесты. Но теперь они интегрированы в мою игру, и я заметил небольшое снижение загрузки процессора по сравнению с предыдущим (это на четырехъядерном процессоре Q6600 - в среднем примерно на 1% меньше).
Еще раз спасибо всем, кто прокомментировал вашу помощь. Никто не указал мне прямо на то, что я искал, но вы дали мне несколько подсказок, которые помогли мне найти его в Google. Я надеюсь, что этот код окажется полезным для кого-то другого, поскольку в C #, опубликованном публично, нет ничего похожего.