#include <cstdio>
/* declaring the struct in the function definition may be possible (I'm not sure,
actually, haha). Unless you have a GOOD reason, it's good practice to declare
structs, globals, typedefs, etc... outside the function */
typedef struct a{
int b;
struct a *next;
} no;
int main()
{
no *n;
/* Here, you have a pointer. Remember these are simply (generally) 32-bit values
defined in your stack space used to store a memory location which points to your
ACTUAL struct a! Depending on what USED to be in the stack space, this could
point ANYWHERE in memory, but usually you will find that it points to the NULL
memory location, which is just address "0". To get this to point to something,
you have to allocate empty space on your heap to store your struct... */
n = malloc(sizeof(no));
/* Now your pointer n points to an allocated 'struct a', and you can use it like
normal */
n->b = 12;
n->next = NULL;
/* You just set n->next, which is another 'no' pointer, to NULL. This means that
n->next points nowhere. So, just like above you have to malloc another instance
of the struct! */
n->next = malloc(sizeof(no));
/* NOW you can use n->next with no ill effects! */
n->next->b = 12;
n->next->next = NULL;
printf("%d %d", n->b, n->next->b);
getchar();
/* After you're done with your structs, you want to free them using the POINTERS
that reference them */
free(n->next);
free(n);
return 0;
}