Для тех, кто сталкивается с этим в будущем.
Это можно сделать с помощью совпадения шаблона . Подводя итог (мое понимание), шаблон соответствия ищет точное совпадение одного изображения в другом изображении.
Вот пример того, как сделать это в Python:
import cv2
method = cv2.TM_SQDIFF_NORMED
# Read the images from the file
small_image = cv2.imread('small_image.png')
large_image = cv2.imread('large_image.jpeg')
result = cv2.matchTemplate(small_image, large_image, method)
# We want the minimum squared difference
mn,_,mnLoc,_ = cv2.minMaxLoc(result)
# Draw the rectangle:
# Extract the coordinates of our best match
MPx,MPy = mnLoc
# Step 2: Get the size of the template. This is the same size as the match.
trows,tcols = small_image.shape[:2]
# Step 3: Draw the rectangle on large_image
cv2.rectangle(large_image, (MPx,MPy),(MPx+tcols,MPy+trows),(0,0,255),2)
# Display the original image with the rectangle around the match.
cv2.imshow('output',large_image)
# The image is only displayed if we call this
cv2.waitKey(0)