>>> import numpy as NP
>>> # create a 2D NumPy array with some duplicate rows
>>> A
array([[1, 1, 1, 5, 7],
[5, 4, 5, 4, 7],
[7, 9, 4, 7, 8],
[5, 4, 5, 4, 7],
[1, 1, 1, 5, 7],
[5, 4, 5, 4, 7],
[7, 9, 4, 7, 8],
[5, 4, 5, 4, 7],
[7, 9, 4, 7, 8]])
>>> # first, sort the 2D NumPy array row-wise so dups will be contiguous
>>> # and rows are preserved
>>> a, b, c, d, e = A.T # create the keys for to pass to lexsort
>>> ndx = NP.lexsort((a, b, c, d, e))
>>> ndx
array([1, 3, 5, 7, 0, 4, 2, 6, 8])
>>> A = A[ndx,]
>>> # now diff by row
>>> A1 = NP.diff(A, axis=0)
>>> A1
array([[0, 0, 0, 0, 0],
[4, 3, 3, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 0, 0],
[2, 5, 0, 2, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
>>> # the index array holding the location of each duplicate row
>>> ndx = NP.any(A1, axis=1)
>>> ndx
array([False, True, False, True, True, True, False, False], dtype=bool)
>>> # retrieve the duplicate rows:
>>> A[1:,:][ndx,]
array([[7, 9, 4, 7, 8],
[1, 1, 1, 5, 7],
[5, 4, 5, 4, 7],
[7, 9, 4, 7, 8]])