Вот примерная реализация кода Matlab для отбеливания матриц, который я получил от здесь .
import numpy as np
def whiten(X,fudge=1E-18):
# the matrix X should be observations-by-components
# get the covariance matrix
Xcov = np.dot(X.T,X)
# eigenvalue decomposition of the covariance matrix
d, V = np.linalg.eigh(Xcov)
# a fudge factor can be used so that eigenvectors associated with
# small eigenvalues do not get overamplified.
D = np.diag(1. / np.sqrt(d+fudge))
# whitening matrix
W = np.dot(np.dot(V, D), V.T)
# multiply by the whitening matrix
X_white = np.dot(X, W)
return X_white, W
Вы также можете отбелить матрицу, используя SVD:
def svd_whiten(X):
U, s, Vt = np.linalg.svd(X, full_matrices=False)
# U and Vt are the singular matrices, and s contains the singular values.
# Since the rows of both U and Vt are orthonormal vectors, then U * Vt
# will be white
X_white = np.dot(U, Vt)
return X_white
Второй способ немного медленнее, но, вероятно, более численно стабилен.