Вы можете написать простую функцию, которая решает систему линейных уравнений.
def solve(equations):
#the constants of a system of linear equations are stored in a list for each equation in the system
"""
for example the system below:
2x+9y-3z+7w+8=0
7x-2y+6z-1w-10=0
-8x-3y+2z+5w+4=0
0x+2y+z+w+0=0
is expressed as the list:
[[2,9,-3,7,8],[7,-2,6,-1,-10],[-8,-3,2,5,4],[0,2,1,1,0]]
"""
lists=[] # I failed to name it meaningfully
for eq in range(len(equations)):
#print "equations 1", equations
#find an equation whose first element is not zero and call it index
index=0
for i in range(len(equations)):
if equations[i][0]<>0:
index=i;
break;
#print "index "+str(eq)+": ",index
#for the equation[index] calc the lists next itam as follows
lists.append([-1.0*i/equations[index][0] for i in equations[index][1:]])
#print "list"+str(eq)+": ", lists[-1]
#remve equation[index] and modify the others
equations.pop(index)
for i in equations:
for j in range(len(lists[-1])):
i[j+1]+=i[0]*lists[-1][j]
i.pop(0)
lists.reverse()
answers=[lists[0][0]]
for i in range(1,len(lists)):
tmpans=lists[i][-1]
for j in range(len(lists[i])-1):
tmpans+=lists[i][j]*answers[-1-j]
answers.append(tmpans)
answers.reverse()
return answers