Как я могу минимизировать расстояние от данного входного распределения? - PullRequest
0 голосов
/ 10 апреля 2019

У меня есть список клиентов, и каждого из них можно «активировать» четырьмя различными способами:

n= 1000
df = pd.DataFrame(list(range(0,n)), columns = ['Customer_ID'])
df['A'] = np.random.randint(2, size=n)
df['B'] = np.random.randint(2, size=n)
df['C'] = np.random.randint(2, size=n)

каждого клиента можно активировать либо на «A», либо на «B», либо на «C "и только если логическое значение, относящееся к типу активации, равно 1.

На входе у меня есть счетчик последних активаций.es:

Target_A = 500
Target_B = 250
Target_C = 250

Случайные значения в коде являются входными данными для оптимизатора и представляют возможность или нет активации клиента таким способом.Как я могу связать клиента только с одним из них, чтобы соблюдать конечные цели?Как я могу минимизировать расстояние между счетом реальной активации и входными данными?

1 Ответ

1 голос
/ 10 апреля 2019

Есть ли у вас проверенные примеры? Я думаю, что это может сработать, но не уверен:

import pandas as pd
import numpy as np
from pulp import LpProblem, LpVariable, LpMinimize, LpInteger, lpSum, value

prob = LpProblem("problem", LpMinimize)


n= 1000
df = pd.DataFrame(list(range(0,n)), columns = ['Customer_ID'])
df['A'] = np.random.randint(2, size=n)
df['B'] = np.random.randint(2, size=n)
df['C'] = np.random.randint(2, size=n)

Target_A = 500
Target_B = 250
Target_C = 250


A = LpVariable.dicts("A", range(0, n), lowBound=0, upBound=1, cat='Boolean')
B = LpVariable.dicts("B", range(0, n), lowBound=0, upBound=1, cat='Boolean')
C = LpVariable.dicts("C", range(0, n), lowBound=0, upBound=1, cat='Boolean')

O1 = LpVariable("O1", cat='Integer')
O2 = LpVariable("O2", cat='Integer')
O3 = LpVariable("O3", cat='Integer')

#objective
prob += O1 + O2 + O3

#constraints
prob += O1 >= Target_A - lpSum(A)
prob += O1 >= lpSum(A) - Target_A
prob += O2 >= Target_B - lpSum(B)
prob += O2 >= lpSum(B) - Target_B
prob += O3 >= Target_C - lpSum(C)
prob += O3 >= lpSum(C) - Target_C

for idx in range(0, n):
    prob += A[idx] + B[idx] + C[idx] <= 1 #cant activate more than 1
    prob += A[idx] <= df['A'][idx] #cant activate if 0
    prob += B[idx] <= df['B'][idx] 
    prob += C[idx] <= df['C'][idx] 

prob.solve()    

print("difference:", prob.objective.value())
...