Мне нужно обучить ряд моделей, но я не получаю выгоды от ускорения графического процессора, используя tenorflow-gpu / keras, поскольку время линейно увеличивается с количеством обучаемых моделей.
В
class Models(tf.keras.Model):
def __init__(self,N_MODELS=1):
super(Models, self).__init__()
self.block_i = [estimate_affine()
for node in range(N_MODELS)]
def call(self, inputs):
x = [self.block_i[i](input_i) for i,input_i in enumerate(inputs)]
return x
список слоев N_MODELS составлен и, как идентификаторы, должен быть распараллелен.Поскольку это не так, даже несмотря на то, что результат - это то, что я ожидаю, я думаю, что моя реализация не оптимальна.Есть идеи, как сделать его распараллеливаемым?
Best
Paul
Вот тойнет N_MODELS линейной регрессии
import tensorflow as tf
tf.enable_eager_execution()
from tensorflow.keras import layers
import numpy as np
from numpy import random
import time
class estimate_affine(layers.Layer):
def __init__(self):
'''
'''
super(estimate_affine, self).__init__()
self.a = tf.Variable(initial_value=[0.], dtype='float32',trainable=True,name='par1')
self.b = tf.Variable(initial_value=[0.], dtype='float32',trainable=True,name='par2')
def call(self, inputs):
return (self.a,self.b)
class Models(tf.keras.Model):
def __init__(self,N_MODELS=1):
super(Models, self).__init__()
self.block_i = [estimate_affine()
for node in range(N_MODELS)]
def call(self, inputs):
x = [self.block_i[i](input_i) for i,input_i in enumerate(inputs)]
return x
N_ITERATIONS=100
N_POINTS=100
ls_t=[]
for N_MODELS in [5,10,50,100,1000]:
t=time.time()
### Aim is to fit N_MODELS on N_POINTS which are basically N_MODELS of ax+b
a=np.random.randint(0,10,N_MODELS)
b=np.random.randint(0,10,N_MODELS)
noise=np.random.rand(N_POINTS) * 1
x=np.linspace(0,1,N_POINTS)
dataset=np.array([a_i *( x + noise) + b_i for a_i,b_i in zip(a,b)])
model=Models(N_MODELS=N_MODELS)
optimizer=tf.keras.optimizers.SGD(learning_rate=5e-3)
for i in range(N_ITERATIONS):
with tf.GradientTape() as tape:
outputs=model(dataset)
L=tf.reduce_sum([((outputs[idx][0]*x+outputs[idx][1])
- dataset[idx,:])**2 for idx in range(N_MODELS)])
grads = tape.gradient(L, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
t_diff=time.time()-t
print('N_MODEL : {}, time : {}'.format(N_MODELS,t_diff))
ls_t.append(t_diff)