Как я могу использовать керас с несколькими выходными данными для отслеживания и последующего прогнозирования? - PullRequest
0 голосов
/ 02 июля 2019

Мне нужно написать код на python для ANN. В настоящее время мой код работает, скажем, на трех наборах входных данных x1, x2, x3 и и y. Но теперь мне нужно написать для ввода x1, x2, x3 и вывода y1, y2. Затем после обучения необходимо прогнозировать данные.

Текстовый файл моих тренировочных данных имеет вид ('HittingCoordinate.txt'):

48.024  61.8892 10.8376 0.400017    0.224192    0.4377888
39.2821 78.4852 10.806  0.400006    0.158922    0.4786495
42.3608 55.6263 14.7301 0.400102    0.190636    0.348763

Я искал в интернете, где я мог найти, что в основном это касается обработки изображений, которая не подходит для моего случая.

Для которого мой код:

seed = 7
np.random.seed(seed)
data = np.loadtxt('HittingCoordinate.txt', dtype = float)

X = data[:,0:3]
Y = (data[:,5][np.newaxis]).T

# scale units
X = X/np.amax(X, axis=0) # maximum of X array
data = np.loadtxt('Input_test.txt', dtype = float)

xPredicted_test = data[:,0:3]
xPredicted_test = xPredicted_test/np.amax(xPredicted_test, axis=0)


data = np.loadtxt('Input.txt', dtype = float)

xPredicted = data[:,0:3]
xPredicted = xPredicted/np.amax(xPredicted, axis=0)

# create model
model = Sequential()
model.add(Dense(15, input_dim=3, init='uniform', activation='sigmoid'))
model.add(Dense(10, init='uniform', activation='relu'))
model.add(Dense(5, init='uniform', activation='relu'))
model.add(Dense(3, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
adam = tf.train.AdamOptimizer(learning_rate=0.1) # the optimizer
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=500, batch_size=50,  verbose=2)
# calculate predictions
predictions = model.predict(X)
#scores = model.evaluate(X, Y, verbose=1)
scores = model.evaluate(X, Y)
predictions_new_test = model.predict(xPredicted_test)
predictions_new = model.predict(xPredicted)
accuracy = (predictions_new_test-Y)*100/Y
print((accuracy))
np.savetxt("Prediction_keras.txt", (predictions_new))

Этот код может обрабатывать один вывод. Как я могу изменить этот код для обработки нескольких выходных данных?

Буду очень рад узнать решение. Спасибо.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...