Я пытаюсь построить CRNN, но в настоящее время я сталкиваюсь с ошибкой в функции Reshape (), в которой говорится, что размер моего исходного массива должен быть неизменным
def CRNN(blockSize, blockCount, inputShape, trainGen, testGen, epochs):
model = Sequential()
# Conv Layer
channels = 32
for i in range(blockCount):
for j in range(blockSize):
if (i, j) == (0, 0):
conv = Conv2D(channels, kernel_size=(5, 5),
input_shape=inputShape, padding='same')
else:
conv = Conv2D(channels, kernel_size=(5, 5), padding='same')
model.add(conv)
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.15))
if j == blockSize - 2:
channels += 32
model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
model.add(Dropout(0.15))
# Feature aggregation across time
model.add(Reshape((9, 960)))
# LSTM layer
model.add(Bidirectional(LSTM(200), merge_mode='ave'))
model.add(Dropout(0.5))
# Linear classifier
model.add(Dense(4, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy']) # F1?
model.fit_generator(trainGen,
validation_data=testGen, steps_per_epoch = trainGen.x.size // 20,
validation_steps = testGen.x.size // 20,
epochs=epochs, verbose=1)
return model
Я вызываю функцию с помощью:
model = CRNN(4, 6, (285, 33, 1), trainGen, testGen, 1)
Таким образом, моя форма ввода (285,33,1).
Получена техническая ошибка:
ValueError: общий размер нового массива долженбыть неизменным.
Есть ли способ получить значение динамически или просто найти правильную форму?