Допустим, я тренирую модель CNN для классификации выражений лица.Это была бы такая модель:
model = Sequential()
#1st convolution layer
model.add(Conv2D(64, (5, 5), activation='relu', input_shape=(48,48,1)))
model.add(MaxPooling2D(pool_size=(5,5), strides=(2, 2)))
#2nd convolution layer
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3,3), strides=(2, 2)))
#3rd convolution layer
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(AveragePooling2D(pool_size=(3,3), strides=(2, 2)))
model.add(Flatten())
#fully connected neural networks
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
Что изменить, чтобы не кончился баран и или возникли проблемы с тренировками, когда тренируешься выше.изображения (например, 576, 768)?
Привет из Германии Luick