Z80 ASM BNF структура ... я на правильном пути? - PullRequest
10 голосов
/ 23 августа 2009

Я пытаюсь изучить BNF и пытаюсь собрать некоторый код Z80 ASM. Поскольку я новичок в обеих областях, мой вопрос, я даже на правильном пути? Я пытаюсь записать формат Z80 ASM в формате EBNF, чтобы затем выяснить, куда идти дальше для создания машинного кода из исходного кода. На данный момент у меня есть следующее:

Assignment = Identifier, ":" ;

Instruction = Opcode, [ Operand ], [ Operand ] ;

Operand = Identifier | Something* ;

Something* = "(" , Identifier, ")" ;

Identifier = Alpha, { Numeric | Alpha } ;

Opcode = Alpha, Alpha ;

Int = [ "-" ], Numeric, { Numeric } ;

Alpha = "A" | "B" | "C" | "D" | "E" | "F" | 
        "G" | "H" | "I" | "J" | "K" | "L" | 
        "M" | "N" | "O" | "P" | "Q" | "R" | 
        "S" | "T" | "U" | "V" | "W" | "X" | 
        "Y" | "Z" ;

Numeric = "0" | "1" | "2" | "3"| "4" | 
          "5" | "6" | "7" | "8" | "9" ;

Любая обратная связь, если я иду не так, была бы превосходной.

Ответы [ 3 ]

18 голосов
/ 23 августа 2009

Сборщики старой школы, как правило, кодировались вручную на ассемблере и использовали специальные методы синтаксического анализа для обработки исходных строк сборки для получения фактического кода на ассемблере. Когда синтаксис ассемблера прост (например, всегда OPCODE REG, OPERAND), это работало достаточно хорошо.

Современные машины имеют грязные, неприятные наборы команд с большим количеством вариантов команд и операндов, которые могут быть выражены с помощью сложного синтаксиса, позволяющего множеству регистров индекса участвовать в выражении операнда. Это усложняет использование сложных выражений времени сборки с фиксированными и перемещаемыми константами с различными типами операторов сложения. Сложные ассемблеры, допускающие условную компиляцию, макросы, объявления структурированных данных и т. Д., Все добавляют новые требования к синтаксису. Обработка всего этого синтаксиса специальными методами очень сложна и является причиной того, что были изобретены генераторы парсеров.

Использование BNF и генератора синтаксического анализатора - очень разумный способ создать современный ассемблер, даже для устаревшего процессора, такого как Z80. Я создал такие ассемблеры для 8-битных машин Motorola, таких как 6800/6809, и готовлюсь сделать то же самое для современного x86. Я думаю, что вы идете по правильному пути.

********** РЕДАКТИРОВАТЬ **************** ОП запросил, например, определения лексера и парсера. Я предоставил оба здесь.

Это выдержки из реальных спецификаций для ассемблера 6809. Полные определения в 2-3 раза превышают размер образцов.

Чтобы уменьшить пространство, я отредактировал большую часть сложности темного угла что является точкой этих определений. Кто-то может быть встревожен сложностью аппарата; Дело в том, что с такими определениями вы пытаетесь описать форма языка, а не код его процедурно. Вы заплатите значительно более высокую сложность, если вы закодируйте все это специальным образом, и это будет далеко менее ремонтопригодны.

Также будет полезно узнать, что эти определения используются с системой анализа программ высокого класса, которая имеет инструменты лексинга / синтаксического анализа в качестве подсистем, называемых Набор инструментов для реинжиниринга программного обеспечения DMS . DMS будет автоматически создавать AST из
грамматические правила в спецификации парсера, что делает его намного проще собрать инструменты разбора. И, наконец, спецификация синтаксического анализатора содержит так называемый "prettyprinter" декларации, которые позволяют DMS восстанавливать исходный текст из AST. (Настоящая цель грамматики состояла в том, чтобы позволить нам создавать AST, представляющие ассемблер инструкции, а затем выплюнуть их для подачи к настоящему ассемблеру!)

Одно замечание: как излагаются лексемы и правила грамматики (metasyntxax!) несколько варьируется между различными системами генератора лексера / парсера. синтаксис спецификаций на основе DMS не является исключением. DMS имеет относительно сложный собственные грамматические правила, которые на самом деле не практичны для объяснения в доступном здесь месте. Вам придется жить с идеей, что другие системы используют аналогичные обозначения, для EBNF для правил и вариантов регулярных выражений для лексем.

Учитывая интересы ОП, он может реализовать аналогичные лексеры / парсеры с любым инструментом генератора лексеров / анализаторов, например, FLEX / YACC, JAVACC, ANTLR, ...

********** LEXER **************

-- M6809.lex: Lexical Description for M6809
-- Copyright (C) 1989,1999-2002 Ira D. Baxter

%%
#mainmode Label

#macro digit "[0-9]"
#macro hexadecimaldigit "<digit>|[a-fA-F]"

#macro comment_body_character "[\u0009 \u0020-\u007E]" -- does not include NEWLINE

#macro blank "[\u0000 \ \u0009]"

#macro hblanks "<blank>+"

#macro newline "\u000d \u000a? \u000c? | \u000a \u000c?" -- form feed allowed only after newline

#macro bare_semicolon_comment "\; <comment_body_character>* "

#macro bare_asterisk_comment "\* <comment_body_character>* "

...[snip]

#macro hexadecimal_digit "<digit> | [a-fA-F]"

#macro binary_digit "[01]"

#macro squoted_character "\' [\u0021-\u007E]"

#macro string_character "[\u0009 \u0020-\u007E]"

%%Label -- (First mode) processes left hand side of line: labels, opcodes, etc.

#skip "(<blank>*<newline>)+"
#skip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

#precomment "<comment_line><newline>"

#preskip "(<blank>*<newline>)+"
#preskip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

-- Note that an apparant register name is accepted as a label in this mode
#token LABEL [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoLabelList ?)
  >>

%%OpcodeField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Opcode field tokens
#token 'ABA'       "[aA][bB][aA]"
   << (GotoEOLComment ?) >>
#token 'ABX'       "[aA][bB][xX]"
   << (GotoEOLComment ?) >>
#token 'ADC'       "[aA][dD][cC]"
   << (GotoABregister ?) >>
#token 'ADCA'      "[aA][dD][cC][aA]"
   << (GotoOperand ?) >>
#token 'ADCB'      "[aA][dD][cC][bB]"
   << (GotoOperand ?) >>
#token 'ADCD'      "[aA][dD][cC][dD]"
   << (GotoOperand ?) >>
#token 'ADD'       "[aA][dD][dD]"
   << (GotoABregister ?) >>
#token 'ADDA'      "[aA][dD][dD][aA]"
   << (GotoOperand ?) >>
#token 'ADDB'      "[aA][dD][dD][bB]"
   << (GotoOperand ?) >>
#token 'ADDD'      "[aA][dD][dD][dD]"
   << (GotoOperand ?) >>
#token 'AND'       "[aA][nN][dD]"
   << (GotoABregister ?) >>
#token 'ANDA'      "[aA][nN][dD][aA]"
   << (GotoOperand ?) >>
#token 'ANDB'      "[aA][nN][dD][bB]"
   << (GotoOperand ?) >>
#token 'ANDCC'     "[aA][nN][dD][cC][cC]"
   << (GotoRegister ?) >>
...[long list of opcodes snipped]

#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoOperandField ?)
  >>

#token '#'   "\#" -- special constant introduction (FDB)
   << (GotoDataField ?) >>

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "\$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token CHARACTER [CHARACTER] "<squoted_character>"
  <<  (= ?:Lexeme:Literal:Character:Value (TokenStringCharacter ? 2))
  (= ?:Lexeme:Literal:Character:Format (LiteralFormat:MakeCompactCharacterLiteralFormat 0 0)) ; nothing special about character
  (GotoOperandField ?)
  >>


%%OperandField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Tokens signalling switch to index register modes
#token ','   "\,"
   <<(GotoRegisterField ?)>>
#token '['   "\["
   <<(GotoRegisterField ?)>>

-- Operators for arithmetic syntax
#token '!!'  "\!\!"
#token '!'   "\!"
#token '##'  "\#\#"
#token '#'   "\#"
#token '&'   "\&"
#token '('   "\("
#token ')'   "\)"
#token '*'   "\*"
#token '+'   "\+"
#token '-'   "\-"
#token '/'   "\/"
#token '//'   "\/\/"
#token '<'   "\<"
#token '<'   "\<" 
#token '<<'  "\<\<"
#token '<='  "\<\="
#token '</'  "\<\/"
#token '='   "\="
#token '>'   "\>"
#token '>'   "\>"
#token '>='  "\>\="
#token '>>'  "\>\>"
#token '>/'  "\>\/"
#token '\\'  "\\"
#token '|'   "\|"
#token '||'  "\|\|"

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "\$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

-- Notice that an apparent register is accepted as a label in this mode
#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  >>

%%Register -- operand field for TFR, ANDCC, ORCC, EXG opcodes

#skip "<hblanks>"
#ifnotoken << (GotoRegisterField ?) >>

%%RegisterField -- handles registers and indexing mode syntax
-- In this mode, names that look like registers are recognized as registers

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

#token '['   "\["
#token ']'   "\]"
#token '--'  "\-\-"
#token '++'  "\+\+"

#token 'A'      "[aA]"
#token 'B'      "[bB]"
#token 'CC'     "[cC][cC]"
#token 'DP'     "[dD][pP] | [dD][pP][rR]" -- DPR shouldnt be needed, but found one instance
#token 'D'      "[dD]"
#token 'Z'      "[zZ]"

-- Index register designations
#token 'X'      "[xX]"
#token 'Y'      "[yY]"
#token 'U'      "[uU]"
#token 'S'      "[sS]"
#token 'PCR'    "[pP][cC][rR]"
#token 'PC'     "[pP][cC]"

#token ','    "\,"

-- Operators for arithmetic syntax
#token '!!'  "\!\!"
#token '!'   "\!"
#token '##'  "\#\#"
#token '#'   "\#"
#token '&'   "\&"
#token '('   "\("
#token ')'   "\)"
#token '*'   "\*"
#token '+'   "\+"
#token '-'   "\-"
#token '/'   "\/"
#token '<'   "\<"
#token '<'   "\<" 
#token '<<'  "\<\<"
#token '<='  "\<\="
#token '<|'  "\<\|"
#token '='   "\="
#token '>'   "\>"
#token '>'   "\>"
#token '>='  "\>\="
#token '>>'  "\>\>"
#token '>|'  "\>\|"
#token '\\'  "\\"
#token '|'   "\|"
#token '||'  "\|\|"

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

... [snip]

%% -- end M6809.lex

**************** PARSER **************

-- M6809.ATG: Motorola 6809 assembly code parser
-- (C) Copyright 1989;1999-2002 Ira D. Baxter; All Rights Reserved

m6809 = sourcelines ;

sourcelines = ;
sourcelines = sourcelines sourceline EOL ;
  <<PrettyPrinter>>: { V(CV(sourcelines[1]),H(sourceline,A<eol>(EOL))); }

-- leading opcode field symbol should be treated as keyword.

sourceline = ;
sourceline = labels ;
sourceline = optional_labels 'EQU' expression ;
  <<PrettyPrinter>>: { H(optional_labels,A<opcode>('EQU'),A<operand>(expression)); }
sourceline = LABEL 'SET' expression ;
  <<PrettyPrinter>>: { H(A<firstlabel>(LABEL),A<opcode>('SET'),A<operand>(expression)); }
sourceline = optional_label instruction ;
  <<PrettyPrinter>>: { H(optional_label,instruction); }
sourceline = optional_label optlabelleddirective ;
  <<PrettyPrinter>>: { H(optional_label,optlabelleddirective); }
sourceline = optional_label implicitdatadirective ;
  <<PrettyPrinter>>: { H(optional_label,implicitdatadirective); }
sourceline = unlabelleddirective ;
sourceline = '?ERROR' ;
  <<PrettyPrinter>>: { A<opcode>('?ERROR'); }

optional_label = labels ;
optional_label = LABEL ':' ;
  <<PrettyPrinter>>: { H(A<firstlabel>(LABEL),':'); }
optional_label = ;

optional_labels = ;
optional_labels = labels ;
labels = LABEL ;
  <<PrettyPrinter>>: { A<firstlabel>(LABEL); }
labels = labels ',' LABEL ;
  <<PrettyPrinter>>: { H(labels[1],',',A<otherlabels>(LABEL)); }

unlabelleddirective = 'END' ;
  <<PrettyPrinter>>: { A<opcode>('END'); }
unlabelleddirective = 'END' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('END'),A<operand>(expression)); }
unlabelleddirective = 'IF' expression EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IF'),H(A<operand>(expression),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'IFDEF' IDENTIFIER EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IFDEF'),H(A<operand>(IDENTIFIER),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'IFUND' IDENTIFIER EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('IFUND'),H(A<operand>(IDENTIFIER),A<eol>(EOL))),CV(conditional)); }
unlabelleddirective = 'INCLUDE' FILENAME ;
  <<PrettyPrinter>>: { H(A<opcode>('INCLUDE'),A<operand>(FILENAME)); }
unlabelleddirective = 'LIST' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('LIST'),A<operand>(expression)); }
unlabelleddirective = 'NAME' IDENTIFIER ;
  <<PrettyPrinter>>: { H(A<opcode>('NAME'),A<operand>(IDENTIFIER)); }
unlabelleddirective = 'ORG' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('ORG'),A<operand>(expression)); }
unlabelleddirective = 'PAGE' ;
  <<PrettyPrinter>>: { A<opcode>('PAGE'); }
unlabelleddirective = 'PAGE' HEADING ;
  <<PrettyPrinter>>: { H(A<opcode>('PAGE'),A<operand>(HEADING)); }
unlabelleddirective = 'PCA' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PCA'),A<operand>(expression)); }
unlabelleddirective = 'PCC' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PCC'),A<operand>(expression)); }
unlabelleddirective = 'PSR' expression ;
  <<PrettyPrinter>>: { H(A<opcode>('PSR'),A<operand>(expression)); }
unlabelleddirective = 'TABS' numberlist ;
  <<PrettyPrinter>>: { H(A<opcode>('TABS'),A<operand>(numberlist)); }
unlabelleddirective = 'TITLE' HEADING ;
  <<PrettyPrinter>>: { H(A<opcode>('TITLE'),A<operand>(HEADING)); }
unlabelleddirective = 'WITH' settings ;
  <<PrettyPrinter>>: { H(A<opcode>('WITH'),A<operand>(settings)); }

settings = setting ;
settings = settings ',' setting ;
  <<PrettyPrinter>>: { H*; }
setting = 'WI' '=' NUMBER ;
  <<PrettyPrinter>>: { H*; }
setting = 'DE' '=' NUMBER ;
  <<PrettyPrinter>>: { H*; }
setting = 'M6800' ;
setting = 'M6801' ;
setting = 'M6809' ;
setting = 'M6811' ;

-- collects lines of conditional code into blocks
conditional = 'ELSEIF' expression EOL conditional ;
  <<PrettyPrinter>>: { V(H(A<opcode>('ELSEIF'),H(A<operand>(expression),A<eol>(EOL))),CV(conditional[1])); }
conditional = 'ELSE' EOL else ;
  <<PrettyPrinter>>: { V(H(A<opcode>('ELSE'),A<eol>(EOL)),CV(else)); }
conditional = 'FIN' ;
  <<PrettyPrinter>>: { A<opcode>('FIN'); }
conditional = sourceline EOL conditional ;
  <<PrettyPrinter>>: { V(H(sourceline,A<eol>(EOL)),CV(conditional[1])); }

else = 'FIN' ;
  <<PrettyPrinter>>: { A<opcode>('FIN'); }
else = sourceline EOL else ;
  <<PrettyPrinter>>: { V(H(sourceline,A<eol>(EOL)),CV(else[1])); }

-- keyword-less directive, generates data tables

implicitdatadirective = implicitdatadirective ',' implicitdataitem ;
  <<PrettyPrinter>>: { H*; }
implicitdatadirective = implicitdataitem ;

implicitdataitem = '#' expression ;
  <<PrettyPrinter>>: { A<operand>(H('#',expression)); }
implicitdataitem = '+' expression ;
  <<PrettyPrinter>>: { A<operand>(H('+',expression)); }
implicitdataitem = '-' expression ;
  <<PrettyPrinter>>: { A<operand>(H('-',expression)); }
implicitdataitem = expression ;
  <<PrettyPrinter>>: { A<operand>(expression); }
implicitdataitem = STRING ;
  <<PrettyPrinter>>: { A<operand>(STRING); }

-- instructions valid for m680C (see Software Dynamics ASM manual)
instruction = 'ABA' ;
  <<PrettyPrinter>>: { A<opcode>('ABA'); }
instruction = 'ABX' ;
  <<PrettyPrinter>>: { A<opcode>('ABX'); }

instruction = 'ADC' 'A' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADC','A')),A<operand>(operandfetch)); }
instruction = 'ADC' 'B' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADC','B')),A<operand>(operandfetch)); }
instruction = 'ADCA' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCA'),A<operand>(operandfetch)); }
instruction = 'ADCB' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCB'),A<operand>(operandfetch)); }
instruction = 'ADCD' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADCD'),A<operand>(operandfetch)); }

instruction = 'ADD' 'A' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADD','A')),A<operand>(operandfetch)); }
instruction = 'ADD' 'B' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>(H('ADD','B')),A<operand>(operandfetch)); }
instruction = 'ADDA' operandfetch ;
  <<PrettyPrinter>>: { H(A<opcode>('ADDA'),A<operand>(operandfetch)); }

[..snip...]

-- condition code mask for ANDCC and ORCC
conditionmask = '#' expression ;
  <<PrettyPrinter>>: { H*; }
conditionmask = expression ;

target = expression ;

operandfetch = '#' expression ; --immediate
  <<PrettyPrinter>>: { H*; }

operandfetch = memoryreference ;

operandstore = memoryreference ;

memoryreference = '[' indexedreference ']' ;
  <<PrettyPrinter>>: { H*; }
memoryreference = indexedreference ;

indexedreference = offset ;
indexedreference = offset ',' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' '--' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' '-' indexregister ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister '++' ;
  <<PrettyPrinter>>: { H*; }
indexedreference = ',' indexregister '+' ;
  <<PrettyPrinter>>: { H*; }

offset = '>' expression ; -- page zero ref
  <<PrettyPrinter>>: { H*; }
offset = '<' expression ; -- long reference
  <<PrettyPrinter>>: { H*; }
offset = expression ;
offset = 'A' ;
offset = 'B' ;
offset = 'D' ;

registerlist = registername ;
registerlist = registerlist ',' registername ;
  <<PrettyPrinter>>: { H*; }

registername = 'A' ;
registername = 'B' ;
registername = 'CC' ;
registername = 'DP' ;
registername = 'D' ;
registername = 'Z' ;
registername = indexregister ;

indexregister = 'X' ;
indexregister = 'Y' ;
indexregister = 'U' ;  -- not legal on M6811
indexregister = 'S' ;
indexregister = 'PCR' ;
indexregister = 'PC' ;

expression = sum '=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<<' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '</' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '<' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>>' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>/' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>=' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '>' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum '#' sum ;
  <<PrettyPrinter>>: { H*; }
expression = sum ;

sum = product ;
sum = sum '+' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '-' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '!' product ;
  <<PrettyPrinter>>: { H*; }
sum = sum '!!' product ;
  <<PrettyPrinter>>: { H*; }

product = term '*' product ;
  <<PrettyPrinter>>: { H*; }
product = term '||' product ; -- wrong?
  <<PrettyPrinter>>: { H*; }
product = term '/' product ;
  <<PrettyPrinter>>: { H*; }
product = term '//' product ;
  <<PrettyPrinter>>: { H*; }
product = term '&' product ;
  <<PrettyPrinter>>: { H*; }
product = term '##' product ;
  <<PrettyPrinter>>: { H*; }
product = term ;

term = '+' term ;
  <<PrettyPrinter>>: { H*; }
term = '-' term ; 
  <<PrettyPrinter>>: { H*; }
term = '\\' term ; -- complement
  <<PrettyPrinter>>: { H*; }
term = '&' term ; -- not

term = IDENTIFIER ;
term = NUMBER ;
term = CHARACTER ;
term = '*' ;
term = '(' expression ')' ;
  <<PrettyPrinter>>: { H*; }

numberlist = NUMBER ;
numberlist = numberlist ',' NUMBER ;
  <<PrettyPrinter>>: { H*; }
3 голосов
/ 23 августа 2009

BNF более широко используется для структурированных вложенных языков, таких как Pascal, C ++ или для чего-либо, происходящего от семейства Algol (которое включает в себя современные языки, такие как C #). Если бы я реализовывал ассемблер, я мог бы использовать несколько простых регулярных выражений для сопоставления с образцом кода операции и операндов. Я уже давно не использую язык ассемблера Z80, но вы можете использовать что-то вроде:

/\s*(\w{2,3})\s+((\w+)(,\w+)?)?/

Это соответствует любой строке, состоящей из двух- или трехбуквенного кода операции, за которым следует один или два операнда, разделенных запятой. После извлечения строки ассемблера, подобной этой, вы должны посмотреть код операции и сгенерировать правильные байты для инструкции, включая значения операндов, если применимо.

Тип синтаксического анализатора, который я обрисовал выше с использованием регулярных выражений, будет называться «специальным анализатором», что, по сути, означает, что вы разбиваете и анализируете ввод на некотором блочном уровне (в случае языка ассемблера, по тексту линия).

2 голосов
/ 23 августа 2009

Не думаю, что вам нужно обдумывать это. Нет смысла создавать синтаксический анализатор, который разбирает «LD A, A» на операции загрузки, назначения и регистр источника, когда вы можете просто сопоставить строку целиком (по модулю и пробелу) непосредственно в один код операции.

Операционных кодов не так много, и они не устроены таким образом, чтобы вы действительно получили много пользы от анализа и понимания IMO на ассемблере. Очевидно, вам понадобится парсер для байтовых / адресных / индексных аргументов, но в остальном у меня будет только один-к-одному поиск.

...