Так как вы не привели пример ожидаемого результата, немного угадываете, что вы на самом деле ищете, но вот одна версия с numpy.
# rewritten arrays for numpy
Diametro_m=[0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,0.3556,
0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,0.4064,
0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,0.4570,
0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,0.5080,
0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,0.559,
0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,0.610,
0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,0.660,
0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,0.711,
0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,0.762,
0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813,0.813]
Espesor_mm=[4.8,5.2,5.3,5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,31.8,
4.8,5.2,5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,
4.8,5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,
5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,33.3,34.9,
5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,33.3,34.9,36.5,38.1,
6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,33.3,34.9,36.5,38.1,39.7,
6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,
6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,
6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,
6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8]
import numpy as np
diametro_entrada = 0.4
espesor_entrada = 5
Diametro_m = np.array(Diametro_m)
Espesor_mm = np.array(Espesor_mm)
# Diametro_m and Espesor_mm has shape (223,)
# if not change so that they have that shape
table = np.array([Diametro_m, Espesor_mm]).T
mask = np.where((np.abs(Diametro_m - diametro_entrada) < 0.05) &
(np.abs(Espesor_mm - espesor_entrada) < 1.2)
)
result = table[mask]
print('with numpy')
print(result)
или вы можете сделать это только с помощью Python ...
# redo with python only
# based on a simple dict and list comprehension
D_m = [0.3556, 0.4064, 0.4570, 0.5080, 0.559, 0.610, 0.660, 0.711, 0.762, 0.813]
E_mm = [[4.8,5.2,5.3,5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,31.8],
[4.8,5.2,5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8],
[4.8,5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8],
[5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,33.3,34.9],
[5.6,6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,33.3,34.9,36.5,38.1],
[6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8,33.3,34.9,36.5,38.1,39.7],
[6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4],
[6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4],
[6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8],
[6.4,7.1,7.9,8.7,9.5,10.3,11.1,11.9,12.7,14.3,15.9,17.5,19.1,20.6,22.2,23.8,25.4,27.0,28.6,30.2,31.8]]
table2 = dict(zip(D_m, E_mm))
result2 = []
for D, E in table2.items():
if abs(D - diametro_entrada) < 0.05:
Et = [t for t in E if abs(t - espesor_entrada) < 1.2]
result2 += [(D, t) for t in Et]
print('with vanilla python')
print('\n'.join((str(r) for r in result2)))
Как только вы попадаете в python, есть бесконечные способы сделать это, вы можете легко сделать то же самое с пандами или sqlite. Мои личные предпочтения имеют тенденцию склоняться к как можно меньшим зависимостям, в этом случае я бы пошел в качестве входного файла csv, а затем делал бы это без нуля, если бы это была действительно крупномасштабная проблема, я бы рассмотрел sqlite / numpy / pandas.
Удачи с переходом, я не думаю, что вы пожалеете об этом.