Я пытаюсь создать сверточный автоэнкодер, но у меня возникают проблемы с частью декодера. Мои входные изображения 32 на 32 на 3 (RGB).
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout
def deep_autoencoder(img_shape, code_size):
#### encoder ######
encoder = keras.models.Sequential()
encoder.add(keras.layers.InputLayer(img_shape))
encoder.add(Conv2D(32, kernel_size=(3, 3), strides=1,
activation='elu', padding ='same' ))
encoder.add(MaxPooling2D(pool_size=(3, 3), padding = 'same'))
encoder.add(Conv2D(64, kernel_size=(3, 3), strides=1,
activation='elu', padding ='same' ))
encoder.add(MaxPooling2D(pool_size=(3, 3), padding = 'same'))
encoder.add(Conv2D(128, kernel_size=(3, 3), strides=1,
activation='elu', padding ='same' ))
encoder.add(MaxPooling2D(pool_size=(3, 3), padding = 'same') )
encoder.add(Conv2D(256, kernel_size=(3, 3), strides=1,
activation='elu', padding ='same' ))
encoder.add(Flatten())
encoder.add(Dense(code_size, activation='relu'))
##### decoder#####
decoder = keras.models.Sequential()
decoder.add(keras.layers.InputLayer((code_size,)))
decoder.add(Dense(code_size, activation='relu'))
decoder.add(keras.layers.Reshape([16,16])) #???
decoder.add(keras.layers.Conv2DTranspose(filters=128, kernel_size=(3, 3), strides=2, activation='elu', padding='same'))
decoder.add(keras.layers.Conv2DTranspose(filters=64, kernel_size=(3, 3), strides=2, activation='elu', padding='same'))
decoder.add(keras.layers.Conv2DTranspose(filters=32, kernel_size=(3, 3), strides=2, activation='elu', padding='same'))
decoder.add(keras.layers.Conv2DTranspose(filters=3, kernel_size=(3, 3), strides=2, padding='same'))
return encoder, decoder
Я предполагаю, что мой декодер должен начинаться с 16 * 16, поскольку моя плотная сеть в конце моего кодера имеет 256 узлов. Однако когда я бегу
encoder, decoder = deep_autoencoder(IMG_SHAPE, code_size=32)
Я получаю ошибку:
---> 34 decoder.add(keras.layers.Reshape([16,16]))
.
.
.
ValueError: total size of new array must be unchanged
Я могу добавить полный код ошибки, если он полезен, но я чувствую, что у меня что-то не так. Чтобы применить деконволюционные фильтры, мне нужно преобразовать сглаженный вывод кодера в матрицу.
Для простоты чтения сети я добавил сводку модели для кодировщика часть - которую я получу, если закомментирую часть декодера и запусту encoder.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 32, 32, 3) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 32, 32, 32) 896
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 11, 11, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 11, 11, 64) 18496
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 4, 4, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 4, 4, 128) 73856
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 2, 2, 128) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 2, 2, 256) 295168
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 1, 1, 256) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 256) 0
_________________________________________________________________
dense_1 (Dense) (None, 32) 8224
=================================================================