Я использую python opencv BFMatcher, чтобы сопоставить HOG-дескрипторы разных патчей одного и того же изображения, чтобы выяснить, подделать ли копировать-вставить. где патчи были получены из алгоритма SLIC в библиотеке scikit.
Код выглядит следующим образом:
def matchWithHOGKNN(SegmentValueList: list, segments: numpy.ndarray, imageColor: numpy.ndarray):
'''prepare the HOG descriptor'''
hog = HOGDescriptor((32, 32), (16, 16), (8, 8), (8, 8),9)
'''iteratively looping over the list of segment values'''
for segVal in noSIFTkeySegValList:
rows, cols = numpy.where(segments == segVal)
'''iterating the HOG sliding window'''
for y in range(min(rows), max(rows) - detection_window_row, 4):
for x in range(min(cols), max(cols) - detection_window_col, 4):
roi = greyImage[y:y + detection_window_row, x:x + detection_window_col]
'''add the descriptor with segment value'''
dictionary[SegVal(segVal)] = hog.compute(img=roi)
# '''after iterating the HOG kernel over the segment, add the descriptors to the dictionary'''
# dictionary[segVal] = temp_h_o_g_descriptors
'''after iterating over all the
compare between the descriptors of each segment obtained
here in the dictionary key->segment_value | value->HOG descriptor'''
'''prepare a numpy array of HOG descriptors'''
hog_descriptors = numpy.array(list(dictionary.values()))
list_of_keys = numpy.array(list(dictionary.keys()))
'''prepare the BF matcher'''
bf = cv2.BFMatcher()
matches = bf.knnMatch(hog_descriptors, hog_descriptors, k=2)
'''iterating over matches to get the best matches'''
for i, (m, n) in enumerate(matches):
distance = abs(n.distance- m.distance)
# if distance < minimum_distance: # for testing purposes
# minimum_distance = distance # for testing purposes
if distance < 0.4:
'''this is taken as a match'''
'''obtain the segment values for matched descriptors'''
keyValue1 = list_of_keys[m.queryIdx].segmentValue
keyValue2 = list_of_keys[n.trainIdx].segmentValue
Проблема здесь в том, что совпавшие патчи не являются желаемыми патчами. Помощь в обнаружении проблемы приветствуется.
пример изображения, как показано ниже,
исходное изображение, полученное из набора данных в Обнаружение и локализация подделки при копировании-перемещении
клонированное изображение
клон обнаруженного изображения
Спасибо.