В настоящее время NLTK pos_tag поддерживает только английский и русский (т.е. lang = 'eng' или lang = 'rus') - PullRequest
0 голосов
/ 05 января 2019

Когда я выполняю код " keyphrase_extraction.py " с Python2.7 в " Ch05_Text_Summarization ", который взят из книги с именем " Text Аналитика с Python"(Код можно найти на https://github.com/dipanjanS/text-analytics-with-python), результаты отображаются как:

root@ubuntu:/home/python/Downloads/text-analytics-with-python-master/Old_Edition_v1/notebooks/Ch05_Text_Summarization# python2.7 keyphrase_extraction.py
alice adventures wonderland lewis carroll 1865
Traceback (most recent call last):
  File "keyphrase_extraction.py", line 135, in <module>
    valid_chunks = get_chunks(sentences)
  File "keyphrase_extraction.py", line 103, in get_chunks
    [nltk.word_tokenize(sentence)])
  File "/usr/local/lib/python2.7/dist-packages/nltk/tag/__init__.py", line 180, in pos_tag_sents
    return [_pos_tag(sent, tagset, tagger) for sent in sentences]
  File "/usr/local/lib/python2.7/dist-packages/nltk/tag/__init__.py", line 115, in _pos_tag
    "Currently, NLTK pos_tag only supports English and Russian "
NotImplementedError: Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')

Реализации кодов в этой книге на основе Python и нескольких популярных библиотек с открытым исходным кодом в NLP и текстовой аналитике, таких как инструментарий естественного языка ( nltk ), gensim , scikit-learn , spaCy и Pattern .

И реализация « keyphrase_extraction.py » будет использовать другие файлы в « Ch05_Text_Summarization ».

Возможно, вы загрузите некоторые необходимые данные с помощью команды:

python -m nltk.downloader -u http://nltk.github.com/nltk_data/ 

Как я могу справиться с этой проблемой? Спасибо большое.

# -*- coding: utf-8 -*-
"""
Created on Sat Sep 03 19:33:32 2016

@author: DIP
"""
import nltk
nltk.download('stopwords')
from nltk.corpus import gutenberg
from normalization import normalize_corpus
#import nltk
from operator import itemgetter

alice = gutenberg.sents(fileids='carroll-alice.txt')
alice = [' '.join(ts) for ts in alice]
norm_alice = filter(None, normalize_corpus(alice, lemmatize=False))

# print first line
print norm_alice[0]

def flatten_corpus(corpus):
    return ' '.join([document.strip() 
                     for document in corpus])

def compute_ngrams(sequence, n):
    return zip(*[sequence[index:] 
                 for index in range(n)])


def get_top_ngrams(corpus, ngram_val=1, limit=5):

    corpus = flatten_corpus(corpus)
    tokens = nltk.word_tokenize(corpus)

    ngrams = compute_ngrams(tokens, ngram_val)
    ngrams_freq_dist = nltk.FreqDist(ngrams)
    sorted_ngrams_fd = sorted(ngrams_freq_dist.items(), 
                              key=itemgetter(1), reverse=True)
    sorted_ngrams = sorted_ngrams_fd[0:limit]
    sorted_ngrams = [(' '.join(text), freq) 
                     for text, freq in sorted_ngrams]

    return sorted_ngrams   


get_top_ngrams(corpus=norm_alice, ngram_val=2,
               limit=10)

get_top_ngrams(corpus=norm_alice, ngram_val=3,
               limit=10)

from nltk.collocations import BigramCollocationFinder
from nltk.collocations import BigramAssocMeasures

finder = BigramCollocationFinder.from_documents([item.split() 
                                                for item 
                                                in norm_alice])
bigram_measures = BigramAssocMeasures()                                                
finder.nbest(bigram_measures.raw_freq, 10)
finder.nbest(bigram_measures.pmi, 10)   

from nltk.collocations import TrigramCollocationFinder
from nltk.collocations import TrigramAssocMeasures

finder = TrigramCollocationFinder.from_documents([item.split() 
                                                for item 
                                                in norm_alice])
trigram_measures = TrigramAssocMeasures()                                                
finder.nbest(trigram_measures.raw_freq, 10)
finder.nbest(trigram_measures.pmi, 10)  


toy_text = """
Elephants are large mammals of the family Elephantidae 
and the order Proboscidea. Two species are traditionally recognised, 
the African elephant and the Asian elephant. Elephants are scattered 
throughout sub-Saharan Africa, South Asia, and Southeast Asia. Male 
African elephants are the largest extant terrestrial animals. All 
elephants have a long trunk used for many purposes, 
particularly breathing, lifting water and grasping objects. Their 
incisors grow into tusks, which can serve as weapons and as tools 
for moving objects and digging. Elephants' large ear flaps help 
to control their body temperature. Their pillar-like legs can 
carry their great weight. African elephants have larger ears 
and concave backs while Asian elephants have smaller ears 
and convex or level backs.  
"""

from normalization import parse_document
import itertools
import nltk
from normalization import stopword_list
from gensim import corpora, models


def get_chunks(sentences, grammar = r'NP: {<DT>? <JJ>* <NN.*>+}'):

    all_chunks = []
    chunker = nltk.chunk.regexp.RegexpParser(grammar)

    for sentence in sentences:

        tagged_sents = nltk.pos_tag_sents(
                            [nltk.word_tokenize(sentence)])

        chunks = [chunker.parse(tagged_sent) 
                  for tagged_sent in tagged_sents]

        wtc_sents = [nltk.chunk.tree2conlltags(chunk)
                     for chunk in chunks]    

        flattened_chunks = list(
                            itertools.chain.from_iterable(
                                wtc_sent for wtc_sent in wtc_sents)
                           )

        valid_chunks_tagged = [(status, [wtc for wtc in chunk]) 
                        for status, chunk 
                        in itertools.groupby(flattened_chunks, 
                                             lambda (word,pos,chunk): chunk != 'O')]

        valid_chunks = [' '.join(word.lower() 
                                for word, tag, chunk 
                                in wtc_group 
                                    if word.lower() 
                                        not in stopword_list) 
                                    for status, wtc_group 
                                    in valid_chunks_tagged
                                        if status]

        all_chunks.append(valid_chunks)

    return all_chunks

sentences = parse_document(toy_text)          
valid_chunks = get_chunks(sentences)
print valid_chunks

def get_tfidf_weighted_keyphrases(sentences, 
                                  grammar=r'NP: {<DT>? <JJ>* <NN.*>+}',
                                  top_n=10):

    valid_chunks = get_chunks(sentences, grammar=grammar)

    dictionary = corpora.Dictionary(valid_chunks)
    corpus = [dictionary.doc2bow(chunk) for chunk in valid_chunks]

    tfidf = models.TfidfModel(corpus)
    corpus_tfidf = tfidf[corpus]

    weighted_phrases = {dictionary.get(id): round(value,3) 
                        for doc in corpus_tfidf 
                        for id, value in doc}

    weighted_phrases = sorted(weighted_phrases.items(), 
                              key=itemgetter(1), reverse=True)

    return weighted_phrases[:top_n]

get_tfidf_weighted_keyphrases(sentences, top_n=10)

# try on other corpora!
get_tfidf_weighted_keyphrases(alice, top_n=10)
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...