Использование структурированного потока Spark с решением Cloudera
Я использую 3 исполнителя, но когда я запускаю приложение, используемый исполнитель только один.
Как я могу использовать несколько исполнителей?
Позвольте мне дать вам больше информации.
Это мои параметры:
Запуск команды:
spark2-submit --master yarn \
--deploy-mode cluster \
--conf spark.ui.port=4042 \
--conf spark.eventLog.enabled=false \
--conf spark.dynamicAllocation.enabled=false \
--conf spark.streaming.backpressure.enabled=true \
--conf spark.streaming.kafka.consumer.poll.ms=512 \
--num-executors 3 \
--executor-cores 3 \
--executor-memory 2g \
--jars /data/test/spark-avro_2.11-3.2.0.jar,/data/test/spark-streaming-kafka-0-10_2.11-2.1.0.cloudera1.jar,/data/test/spark-sql-kafka-0-10_2.11-2.1.0.cloudera1.jar \
--class com.test.Hello /data/test/Hello.jar
Код:
val lines = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", <topic_list:9092>)
.option("subscribe", <topic_name>)
.option("group.id", <consumer_group_id>)
.load()
.select($"value".as[Array[Byte]], $"timestamp")
.map((c) => { .... })
val query = lines
.writeStream
.format("csv")
.option("path", <outputPath>)
.option("checkpointLocation", <checkpointLocationPath>)
.start()
query.awaitTermination()
Результат в SparkUI:
Изображение SparkUI
То, что я ожидал, что все исполнители работали.
Есть предложения?
Спасибо
Paolo