Вы можете использовать np.tile
и измените цикл for следующим образом
xa_tiled = np.tile(xa, (pos.shape[1],1))
xb_tiled = np.tile(xb, (pos.shape[1],1))
ya_tiled = np.tile(ya, (pos.shape[1],1))
yb_tiled = np.tile(yb, (pos.shape[1],1))
vals_ = np.exp(-0.5 * (
((pos[0].reshape(pos.shape[1],1) - xa_tiled) / xb_tiled)**2 + ((pos[1].reshape(pos.shape[1],1) - ya_tiled) / yb_tiled)**2)) / (xb_tiled * yb_tiled)
vals_ = vals_.sum(axis=1)
Пояснение:
- В каждой итерации вы берете pos [0] [i] и pos [1] [i] и выполняете операции над xa, xb, ya, yb.
- Плитка копирует все 4 из этих 250000 раз, что является формой [1] pos или числом итераций.
- Нам также нужно изменить форму pos [0] и pos [1] и просто сделать их 2D, чтобы операции были действительными.
Детали синхронизации:
На моей машине векторизованный код занимает ~ 20 секунд, тогда как не векторизованный код занимает около 3 секунд. Ниже приведен код для воспроизведения:
import numpy as np
import time
# Some random data
N = 30
xa, xb = np.random.uniform(0., 1., N), np.random.uniform(0., 1., N)
ya, yb = np.random.uniform(0., 1., N), np.random.uniform(0., 1., N)
# Grid
M = 500
ext = [xa.min(), xa.max(), ya.min(), ya.max()]
x, y = np.mgrid[ext[0]:ext[1]:complex(0, M), ext[2]:ext[3]:complex(0, M)]
pos = np.vstack([x.ravel(), y.ravel()])
# Apply broadcasting on the operation performed by this 'for' block?
start = time.time()
for i in range(10):
vals = []
for p in zip(*pos):
vals.append(np.sum(np.exp(-0.5 * (
((p[0] - xa) / xb)**2 + ((p[1] - ya) / yb)**2)) / (xb * yb)))
stop = time.time()
print( (stop-start)/10)
start = time.time()
for i in range(10):
xa_tiled = np.tile(xa, (pos.shape[1],1))
xb_tiled = np.tile(xb, (pos.shape[1],1))
ya_tiled = np.tile(ya, (pos.shape[1],1))
yb_tiled = np.tile(yb, (pos.shape[1],1))
vals_ = np.exp(-0.5 * (
((pos[0,:].reshape(pos.shape[1],1) - xa_tiled) / xb_tiled)**2 + ((pos[1].reshape(pos.shape[1],1) - ya_tiled) / yb_tiled)**2)) / (xb_tiled * yb_tiled)
vals_ = vals_.sum(axis=1)
stop = time.time()
print( (stop-start)/10)
print(np.allclose(vals_, np.array(vals))==True)