вот код
класс ViewController: UIViewController, AVCaptureVideoDataOutputSampleBufferDelegate {
let identifierLabel: UILabel = {
let label = UILabel()
label.backgroundColor = .white
label.textAlignment = .center
label.translatesAutoresizingMaskIntoConstraints = false
return label
}()
override func viewDidLoad() {
super.viewDidLoad()
// here is where we start up the camera
// for more details visit: https://www.letsbuildthatapp.com/course_video?id=1252
let captureSession = AVCaptureSession()
captureSession.sessionPreset = .photo
guard let captureDevice = AVCaptureDevice.default(for: .video) else { return }
guard let input = try? AVCaptureDeviceInput(device: captureDevice) else { return }
captureSession.addInput(input)
captureSession.startRunning()
let previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
view.layer.addSublayer(previewLayer)
previewLayer.frame = view.frame
let dataOutput = AVCaptureVideoDataOutput()
dataOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label: "videoQueue"))
captureSession.addOutput(dataOutput)
// VNImageRequestHandler (cgImage: <# T ## CGImage #>, параметры: [:]). Execute (<# T ## запросов: [VNRequest] ## [VNRequest] #>)
setupIdentifierConfidenceLabel()
}
fileprivate func setupIdentifierConfidenceLabel() {
view.addSubview(identifierLabel)
identifierLabel.bottomAnchor.constraint(equalTo: view.bottomAnchor, constant: -32).isActive = true
identifierLabel.leftAnchor.constraint(equalTo: view.leftAnchor).isActive = true
identifierLabel.rightAnchor.constraint(equalTo: view.rightAnchor).isActive = true
identifierLabel.heightAnchor.constraint(equalToConstant: 50).isActive = true
}
func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
// print («Камера смогла захватить кадр:», Date ())
guard let pixelBuffer: CVPixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { return }
// !!!Important
// make sure to go download the models at https://developer.apple.com/machine-learning/ scroll to the bottom
guard let model = try? VNCoreMLModel(for: handWritten().model) else { return }
let request = VNCoreMLRequest(model: model) { (finishedReq, err) in
//perhaps check the err
// print (законченный запрос.результаты)
guard let results = finishedReq.results as? [VNClassificationObservation] else { return }
guard let firstObservation = results.first else { return }
print(firstObservation.identifier, firstObservation.confidence)
DispatchQueue.main.async {
self.identifierLabel.text = "\(firstObservation.identifier) \(firstObservation.confidence * 100)"
}
}
try? VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:]).perform([request])
}
}