Я использую функцию RidgeCV из библиотеки scikit. Учимся находить оптимальный параметр регуляризации в заданном диапазоне регрессии гребня. Я создал истинный вывод и сохранил его в массиве t [] с добавлением шума. У меня есть входные значения в X [], который содержит k элементов. Для каждого элемента k мы генерируем L значений шума, что является нормальным распределением, дающим k * L экземпляров t.
ridge=make_pipeline(PolynomialFeatures(i),RidgeCV(alphas = lambdas, fit_intercept=False))
ridge.fit(X[:, None], t)
Однако при выполнении этого я получаю следующую ошибку:
Enter the Number k:8
Enter the Number L:1
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:952: RuntimeWarning: divide by zero encountered in double_scalars
w = ((v + alpha) ** -1) - (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:953: RuntimeWarning: divide by zero encountered in double_scalars
w[constant_column] = - (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:955: RuntimeWarning: divide by zero encountered in double_scalars
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:955: RuntimeWarning: invalid value encountered in add
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:956: RuntimeWarning: divide by zero encountered in double_scalars
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:956: RuntimeWarning: invalid value encountered in add
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
Polynomial of degree 1 and lambda_optimum =0.0 is:[nan nan]
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:952: RuntimeWarning: divide by zero encountered in double_scalars
w = ((v + alpha) ** -1) - (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:953: RuntimeWarning: divide by zero encountered in double_scalars
w[constant_column] = - (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:955: RuntimeWarning: divide by zero encountered in double_scalars
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:955: RuntimeWarning: invalid value encountered in add
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:956: RuntimeWarning: divide by zero encountered in double_scalars
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:956: RuntimeWarning: invalid value encountered in add
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
Polynomial of degree 2 and lambda_optimum =0.0 is:[nan nan nan]
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:952: RuntimeWarning: divide by zero encountered in double_scalars
w = ((v + alpha) ** -1) - (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:953: RuntimeWarning: divide by zero encountered in double_scalars
w[constant_column] = - (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:955: RuntimeWarning: divide by zero encountered in double_scalars
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:955: RuntimeWarning: invalid value encountered in add
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:956: RuntimeWarning: divide by zero encountered in double_scalars
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
C:\Users\Sankalp\PycharmProjects\MachineLearning\venv\lib\site-packages\sklearn\linear_model\ridge.py:956: RuntimeWarning: invalid value encountered in add
G_diag = self._decomp_diag(w, U) + (alpha ** -1)
Пожалуйста, помогите! Заранее спасибо:)