Я думаю, вы можете сделать это, используя функцию distances()
, которая генерирует матрицу расстояний (без ребер) между узлами. Похоже, это делает поиск один раз и намного быстрее, чем итерация по каждой вершине.
Пример кода:
library(igraph)
library(microbenchmark)
# generate some random testing data
set.seed(1234)
g <- erdos.renyi.game(50, .01)
# Here we make a function that iterates
# across the vector of IDs applying the function
# and returns a list where each element is the
# ids of the subcomponents
sc_apply <- function(g) {
vs <- V(g)
res <- sapply(vs, function(v){as.numeric( # to facilitate comparison
subcomponent(g, v, mode = "in")
)})
res
}
# Try it for testing
t1 <- sc_apply(g)
# Here we get the matrix of node distances. Infinite distance
# implies a seperate component. We iterate through rows of
# matrix to extract the set of nodes that are connected
sc_distmat <- function(g) {
dmat <- distances(g, mode = "in")
res <- apply(dmat, 1, function(row){which(is.finite(row))})
res
}
# extract for testing
t2 <- sc_distmat(g)
# check that equal (we need to sort the
# subcomponent list elements first to facilitate comparison)
all.equal(lapply(t1, sort), t2)
#> [1] TRUE
Результаты идентичны - хотя стоит отметить, что если ваш график представляет собой один гигантский компонент, то применение apply вернет вам матрицу, а не список, поэтому вам придется выполнять сравнения немного другим способом.
Хорошо, теперь давайте посмотрим, насколько / быстрее это:
# generate graphs of different sizes (not too big because my
# laptop is borderline antique!)
set.seed(42)
small_g <- erdos.renyi.game(10, .2)
mid_g <- erdos.renyi.game(50, .1)
big_g <- erdos.renyi.game(100, .1)
# check speed improvement
microbenchmark(sc_apply(small_g), sc_distmat(small_g))
#> Unit: microseconds
#> expr min lq mean median uq
#> sc_apply(small_g) 2181.465 2243.4895 2734.7132 2313.005 2777.7135
#> sc_distmat(small_g) 451.333 471.8565 840.4742 521.865 598.0845
#> max neval cld
#> 9152.262 100 b
#> 27139.262 100 a
microbenchmark(sc_apply(mid_g), sc_distmat(mid_g))
#> Unit: microseconds
#> expr min lq mean median uq
#> sc_apply(mid_g) 11006.113 11327.794 13590.9536 12919.492 15397.2510
#> sc_distmat(mid_g) 757.752 795.308 949.2551 841.834 965.4545
#> max neval cld
#> 27068.296 100 b
#> 2061.824 100 a
microbenchmark(sc_apply(big_g), sc_distmat(big_g))
#> Unit: milliseconds
#> expr min lq mean median uq
#> sc_apply(big_g) 23.11678 26.696373 29.940675 29.191045 33.012796
#> sc_distmat(big_g) 1.67531 1.727873 2.156307 1.855994 2.244872
#> max neval cld
#> 47.081647 100 b
#> 7.576123 100 a
Как вы можете видеть, подход distances()
становится все быстрее и быстрее с ростом размера графика.
Создано в 2019-01-10 пакетом Представление (v0.2.1)