Проблема с трекером с XGBoost в PySpark - PullRequest
0 голосов
/ 07 января 2019

Я использую XGBoost в PySpark, поместив эти две банки xgboost4j и xgboost4j-spark в папку $SPARK_HOME/jars.

Когда я пытаюсь соответствовать модели XGBoostClassifier, я получаю сообщение об ошибке со следующим сообщением

py4j.protocol.Py4JJavaError: Произошла ошибка при вызове o413.fit. : ml.dmlc.xgboost4j.java.XGBoostError: Обучение XGBoostModel не выполнено

Я искал трекер в трассировке и заметил, что он не привязан к локальному хосту. Это информация трекера

Tracker started, with env={}

Я использую Mac и проверил наличие /etc/hosts файла

##
# Host Database
#
# localhost is used to configure the loopback interface
# when the system is booting.  Do not change this entry.
##
127.0.0.1   localhost.localdomain localhost
255.255.255.255 broadcasthost
::1             localhost
127.0.0.1 myusername

В файле hosts все выглядит нормально.

Есть идеи, почему трекер не может правильно инициализироваться?

Ошибка трассировки

Tracker started, with env={}
2019-01-07 12:50:19 ERROR RabitTracker:91 - Uncaught exception thrown by worker:
java.lang.InterruptedException
    at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:998)
    at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1304)
    at scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:202)
    at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218)
    at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:153)
    at org.apache.spark.util.ThreadUtils$.awaitReady(ThreadUtils.scala:222)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:633)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
    at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:929)
    at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:927)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
    at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:927)
    at ml.dmlc.xgboost4j.scala.spark.XGBoost$$anonfun$trainDistributed$4$$anon$1.run(XGBoost.scala:233)

Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
  File "/Users/myusername/Downloads/ml_project/ml_project/features/variable_selection.py", line 130, in fit
    self.ttv.fit(target_col, X, test=None, validation=None)
  File "/Users/myusername/Downloads/ml_project/ml_project/models/train_test_validator.py", line 636, in fit
    upper_bounds, self.curr_model_num_iter, is_integer_variable)
  File "/Users/myusername/Downloads/ml_project/ml_project/models/train_test_validator.py", line 253, in model_tuner
    num_iter, is_integer_variable, random_state=42)
  File "/Users/myusername/Downloads/ml_project/ml_project/models/hyperparam_optimizers.py", line 200, in aml_forest_maximize
    is_integer_variable, random_state=random_state)
  File "/Users/myusername/Downloads/ml_project/ml_project/models/hyperparam_optimizers.py", line 179, in aml_forest_minimize
    return forest_minimize(objective_calculator, space, n_calls=num_iter, random_state=random_state, n_random_starts=n_random_starts, base_estimator="RF", n_jobs=-1)
  File "/usr/local/lib/python3.7/site-packages/skopt/optimizer/forest.py", line 161, in forest_minimize
    callback=callback, acq_optimizer="sampling")
  File "/usr/local/lib/python3.7/site-packages/skopt/optimizer/base.py", line 248, in base_minimize
    next_y = func(next_x)
  File "/Users/myusername/Downloads/ml_project/ml_project/models/train_test_validator.py", line 487, in objective_calculator
    model_fit = init_model.fit(train)  # fit model
  File "/Users/myusername/Downloads/spark/python/pyspark/ml/base.py", line 132, in fit
    return self._fit(dataset)
  File "/Users/myusername/Downloads/spark/python/pyspark/ml/wrapper.py", line 288, in _fit
    java_model = self._fit_java(dataset)
  File "/Users/myusername/Downloads/spark/python/pyspark/ml/wrapper.py", line 285, in _fit_java
    return self._java_obj.fit(dataset._jdf)
  File "/Users/myusername/Downloads/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
  File "/Users/myusername/Downloads/spark/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/Users/myusername/Downloads/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o413.fit.
: ml.dmlc.xgboost4j.java.XGBoostError: XGBoostModel training failed
    at ml.dmlc.xgboost4j.scala.spark.XGBoost$.ml$dmlc$xgboost4j$scala$spark$XGBoost$$postTrackerReturnProcessing(XGBoost.scala:283)
    at ml.dmlc.xgboost4j.scala.spark.XGBoost$$anonfun$trainDistributed$4.apply(XGBoost.scala:240)
    at ml.dmlc.xgboost4j.scala.spark.XGBoost$$anonfun$trainDistributed$4.apply(XGBoost.scala:222)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.immutable.List.foreach(List.scala:381)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
    at scala.collection.immutable.List.map(List.scala:285)
    at ml.dmlc.xgboost4j.scala.spark.XGBoost$.trainDistributed(XGBoost.scala:221)
    at ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier.train(XGBoostClassifier.scala:191)
    at ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier.train(XGBoostClassifier.scala:48)
    at org.apache.spark.ml.Predictor.fit(Predictor.scala:118)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)

1 Ответ

0 голосов
/ 07 июня 2019

Попробуйте добавить xgboost-tracker.properties файл в папку с файлами JAR со следующим содержимым:

host-ip=0.0.0.0

XGBoost github

Другой вариант - разархивировать файл jg xgboost4j с помощью команды:

jar xf xgboost4j-0.72.jar

Вы можете изменить tracker.py файл вручную и добавить исправленный файл обратно в jar, используя

jar uf xgboost4j-0.72.jar tracker.py
...