Относительный новичок к прогнозному моделированию - большая часть моего обучения / опыта находится в логической статистике. Я пытаюсь предсказать выпуск студентов колледжа через 4 года.
Основная проблема заключается в том, что я сделал очистку данных (вменение, центрирование, масштабирование); разделить обработанные / преобразованные данные на обучающие (70%) и проверочные (30%) наборы; сбалансировать данные, используя два подхода (потому что данные были 65% = 0, 35% = 1 - и я нашел непоследовательный совет относительно того, что классифицируется как несбалансированный, но один источник предложил что-то не в пределах диапазона 40/60) - ROSE " ОБА "и СМОТРЕТЬ; и побежал случайные леса.
Для моделей ROSE "ОБА" я получил точность 0,9242 на тренировочном наборе и AUC 0,9268 для испытательного комплекта.
Для модели SMOTE я получил 0,9943 точности на тренировочном наборе и AUC 0,9971 на тестовом наборе.
Дополнительные сведения о производительности модели встроены в код, скопированный ниже.
Это кажется слишком хорошим, чтобы быть правдой. Но то, что я смог найти, немного улучшило производительность тестового набора, не указывало бы на переоснащение (это было бы наоборот). Итак, производительность этих моделей, скорее всего, действительно хорошая или слишком хорошая, чтобы быть правдой? Я не смог найти прямой ответ на этот вопрос с помощью поисков SO.
Кроме того, через несколько недель у меня будет еще одна группа данных, на которой я смогу это обработать. Я полагаю, это может быть еще один «тестовый» набор, верно? Затем я могу применить это к новейшей когорте, для которой мы заинтересованы в том, чтобы узнать вероятность получения диплома через 4 года.
Большое спасибо,
Brian
#Used for predictive modeling of 4-year graduation
#IMPORT DATA
library(haven)
grad4yr <- [file path]
#DETERMINE DATA BALANCE/UNBALANCE
prop.table(table(grad4yr$graduate_4_yrs))
# 0=0.6492, 1=0.3517
#convert to factor so next step doesn't impute outcome variable
grad4yr$graduate_4_yrs <- as.factor(grad4yr$graduate_4_yrs)
#Preprocess data, RANN package used
library('RANN')
#Create proprocessed values object which includes centering, scaling, and imputing missing values using KNN
Processed_Values <- preProcess(grad4yr, method = c("knnImpute","center","scale"))
#Create new dataset with imputed values and centering/scaling
#Confirmed this results in 0 cases with missing values
grad4yr_data_processed <- predict(Processed_Values, grad4yr)
#Confirm last step results in 0 cases with missing values
sum(is.na(grad4yr_data_processed))
#[1] 0
#Convert outcome variable to numeric to ensure dummify step (next) doesn't dummify outcome variable.
grad4yr_data_processed$graduate_4_yrs <- as.factor(grad4yr_data_processed$graduate_4_yrs)
#Convert all factor variables to dummy variables; fullrank used to omit one of new dummy vars in each
#set.
dmy <- dummyVars("~ .", data = grad4yr_data_processed, fullRank = TRUE)
#Create new dataset that has the data imputed AND transformed to have dummy variables for all variables that
#will go in models.
grad4yr_processed_transformed <- data.frame(predict(dmy,newdata = grad4yr_data_processed))
#Convert outcome variable back to binary/factor for predictive models and create back variable with same name
#not entirely sure who last step created new version of outcome var with ".1" at the end
grad4yr_processed_transformed$graduate_4_yrs.1 <- as.factor(grad4yr_processed_transformed$graduate_4_yrs.1)
grad4yr_processed_transformed$graduate_4_yrs <- as.factor(grad4yr_processed_transformed$graduate_4_yrs)
grad4yr_processed_transformed$graduate_4_yrs.1 <- NULL
#Split data into training and testing/validation datasets based on outcome at 70%/30%
index <- createDataPartition(grad4yr_processed_transformed$graduate_4_yrs, p=0.70, list=FALSE)
trainSet <- grad4yr_processed_transformed[index,]
testSet <- grad4yr_processed_transformed[-index,]
#load caret
library(caret)
#Feature selection using rfe in R Caret, used with profile/comparison
control <- rfeControl(functions = rfFuncs,
method = "repeatedcv",
repeats = 10,#using k=10 per Kuhn & Johnson pp70; and per James et al pp
#https://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf
verbose = FALSE)
#create traincontrol using repeated cross-validation with 10 fold 5 times
fitControl <- trainControl(method = "repeatedcv",
number = 10,
repeats = 5,
search = "random")
#Set the outcome variable object
grad4yrs <- 'graduate_4_yrs'
#set predictor variables object
predictors <- names(trainSet[!names(trainSet) %in% grad4yrs])
#create predictor profile to see what where prediction is best (by num vars)
grad4yr_pred_profile <- rfe(trainSet[,predictors],trainSet[,grad4yrs],rfeControl = control)
# Recursive feature selection
#
# Outer resampling method: Cross-Validated (10 fold, repeated 5 times)
#
# Resampling performance over subset size:
#
# Variables Accuracy Kappa AccuracySD KappaSD Selected
# 4 0.6877 0.2875 0.03605 0.08618
# 8 0.7057 0.3078 0.03461 0.08465 *
# 16 0.7006 0.2993 0.03286 0.08036
# 40 0.6949 0.2710 0.03330 0.08157
#
# The top 5 variables (out of 8):
# Transfer_Credits, HS_RANK, Admit_Term_Credits_Taken, first_enroll, Admit_ReasonUT10
#see data structure
str(trainSet)
#not copying output here, but confirms outcome var is factor and everything else is numeric
#given 65/35 split on outcome var and what can find about unbalanced data, considering unbalanced and doing steps to balance.
#using ROSE "BOTH and SMOTE to see how differently they perform. Also ran under/over with ROSE but they didn't perform nearly as
#well so removed from this script.
#SMOTE to balance data on the processed/dummified dataset
library(DMwR)#https://www3.nd.edu/~dial/publications/chawla2005data.pdf for justification
train.SMOTE <- SMOTE(graduate_4_yrs ~ ., data=grad4yr_processed_transformed, perc.over=600, perc.under=100)
#see how balanced SMOTE resulting dataset is
prop.table(table(train.SMOTE$graduate_4_yrs))
#0 1
#0.4615385 0.5384615
#open ROSE package/library
library("ROSE")
#ROSE to balance data (using BOTH) on the processed/dummified dataset
train.both <- ovun.sample(graduate_4_yrs ~ ., data=grad4yr_processed_transformed, method = "both", p=.5,
N = 2346)$data
#see how balanced BOTH resulting dataset is
prop.table(table(train.both$graduate_4_yrs))
#0 1
#0.4987212 0.5012788
#ROSE to balance data (using BOTH) on the processed/dummified dataset
table(grad4yr_processed_transformed$graduate_4_yrs)
#0 1
#1144 618
library("caret")
#create random forests using balanced data from above
RF_model_both <- train(train.both[,predictors],train.both[, grad4yrs],method = 'rf', trControl = fitControl, ntree=1000, tuneLength = 10)
#print info on accuracy & kappa for "BOTH" training model
# print(RF_model_both)
# Random Forest
#
# 2346 samples
# 40 predictor
# 2 classes: '0', '1'
#
# No pre-processing
# Resampling: Cross-Validated (10 fold, repeated 5 times)
# Summary of sample sizes: 2112, 2111, 2111, 2112, 2111, 2112, ...
# Resampling results across tuning parameters:
#
# mtry Accuracy Kappa
# 8 0.9055406 0.8110631
# 11 0.9053719 0.8107246
# 12 0.9057981 0.8115770
# 13 0.9054584 0.8108965
# 14 0.9048602 0.8097018
# 20 0.9034992 0.8069796
# 26 0.9027307 0.8054427
# 30 0.9034152 0.8068113
# 38 0.9023899 0.8047622
# 40 0.9032428 0.8064672
# Accuracy was used to select the optimal model using the largest value.
# The final value used for the model was mtry = 12.
RF_model_SMOTE <- train(train.SMOTE[,predictors],train.SMOTE[, grad4yrs],method = 'rf', trControl = fitControl, ntree=1000, tuneLength = 10)
#print info on accuracy & kappa for "SMOTE" training model
# print(RF_model_SMOTE)
# Random Forest
#
# 8034 samples
# 40 predictor
# 2 classes: '0', '1'
#
# No pre-processing
# Resampling: Cross-Validated (10 fold, repeated 5 times)
# Summary of sample sizes: 7231, 7231, 7230, 7230, 7231, 7231, ...
# Resampling results across tuning parameters:
#
# mtry Accuracy Kappa
# 17 0.9449082 0.8899939
# 19 0.9458047 0.8917740
# 21 0.9458543 0.8918695
# 29 0.9470243 0.8941794
# 31 0.9468750 0.8938864
# 35 0.9468003 0.8937290
# 36 0.9463772 0.8928876
# 40 0.9463275 0.8927828
#
# Accuracy was used to select the optimal model using the largest value.
# The final value used for the model was mtry = 29.
#Given that both accuracy and kappa appear better in the "SMOTE" random forest it's looking like it's the better model.
#But, running ROC/AUC on both to see how they both perform on validation data.
#Create predictions based on random forests above
rf_both_predictions <- predict.train(object=RF_model_both,testSet[, predictors], type ="raw")
rf_SMOTE_predictions <- predict.train(object=RF_model_SMOTE,testSet[, predictors], type ="raw")
#Create predictions based on random forests above
rf_both_pred_prob <- predict.train(object=RF_model_both,testSet[, predictors], type ="prob")
rf_SMOTE_pred_prob <- predict.train(object=RF_model_SMOTE,testSet[, predictors], type ="prob")
#create Random Forest confusion matrix to evaluate random forests
confusionMatrix(rf_both_predictions,testSet[,grad4yrs], positive = "1")
#output copied here:
# Confusion Matrix and Statistics
#
# Reference
# Prediction 0 1
# 0 315 12
# 1 28 173
#
# Accuracy : 0.9242
# 95% CI : (0.8983, 0.9453)
# No Information Rate : 0.6496
# P-Value [Acc > NIR] : < 2e-16
#
# Kappa : 0.8368
# Mcnemar's Test P-Value : 0.01771
#
# Sensitivity : 0.9351
# Specificity : 0.9184
# Pos Pred Value : 0.8607
# Neg Pred Value : 0.9633
# Prevalence : 0.3504
# Detection Rate : 0.3277
# Detection Prevalence : 0.3807
# Balanced Accuracy : 0.9268
#
# 'Positive' Class : 1
# confusionMatrix(rf_under_predictions,testSet[,grad4yrs], positive = "1")
#output copied here:
#Accuracy : 0.8258
#only copied accuracy as it was fair below two other versions
confusionMatrix(rf_SMOTE_predictions,testSet[,grad4yrs], positive = "1")
#output copied here:
# Confusion Matrix and Statistics
#
# Reference
# Prediction 0 1
# 0 340 0
# 1 3 185
#
# Accuracy : 0.9943
# 95% CI : (0.9835, 0.9988)
# No Information Rate : 0.6496
# P-Value [Acc > NIR] : <2e-16
#
# Kappa : 0.9876
# Mcnemar's Test P-Value : 0.2482
#
# Sensitivity : 1.0000
# Specificity : 0.9913
# Pos Pred Value : 0.9840
# Neg Pred Value : 1.0000
# Prevalence : 0.3504
# Detection Rate : 0.3504
# Detection Prevalence : 0.3561
# Balanced Accuracy : 0.9956
#
# 'Positive' Class : 1
#put predictions in dataset
testSet$rf_both_pred <- rf_both_predictions#predictions (BOTH)
testSet$rf_SMOTE_pred <- rf_SMOTE_predictions#probabilities (BOTH)
testSet$rf_both_prob <- rf_both_pred_prob#predictions (SMOTE)
testSet$rf_SMOTE_prob <- rf_SMOTE_pred_prob#probabilities (SMOTE)
library(pROC)
#get AUC of the BOTH predictions
testSet$rf_both_pred <- as.numeric(testSet$rf_both_pred)
Both_ROC_Curve <- roc(response = testSet$graduate_4_yrs,
predictor = testSet$rf_both_pred,
levels = rev(levels(testSet$graduate_4_yrs)))
auc(Both_ROC_Curve)
# Area under the curve: 0.9268
#get AUC of the SMOTE predictions
testSet$rf_SMOTE_pred <- as.numeric(testSet$rf_SMOTE_pred)
SMOTE_ROC_Curve <- roc(response = testSet$graduate_4_yrs,
predictor = testSet$rf_SMOTE_pred,
levels = rev(levels(testSet$graduate_4_yrs)))
auc(SMOTE_ROC_Curve)
#Area under the curve: 0.9971
#So, the SMOTE balanced data performed very well on training data and near perfect on the validation/test data.
#But, it seems almost too good to be true.
#Is there anything I might have missed or performed incorrectly?