Как найти точку на поверхности Земли с учетом исходной точки, расстояния и направления (азимут) - PullRequest
3 голосов
/ 19 июня 2009

Предыдущий вопрос «Геоалгоритм для нахождения координат точки из известного местоположения по расстоянию и азимуту» задает то же самое, но найденное решение является грубым приближением. Я хочу более точное решение. Я сравниваю результаты с формулами Великий круг , которые являются одной из лучших формул Географическое расстояние .

Ответы [ 2 ]

3 голосов
/ 22 июня 2009

Это лучшая формула, которую я когда-либо видел из http://www.movable -type.co.uk / scripts / latlong-vincenty-direct.html

a, b = major & minor semiaxes of the ellipsoid   
f = flattening (a−b)/a   
φ1, φ2 = geodetic latitude   
s = length of the geodesic   
α1, α2 = azimuths of the geodesic (initial/final bearing)    

tanU1 = (1−f).tanφ1 (U is ‘reduced latitude’)    
cosU1 = 1/√(1+tan²U1), sinU1 = tanU1.cosU1 (trig identities; §6)     
σ1 = atan2(tanU1, cosα1)    (1)
sinα = cosU1.sinα1  (2)
cos²α = 1 − sin²α (trig identity; §6)    
u² = cos²α.(a²−b²)/b²    
A = 1+u²/16384.{4096+u².[−768+u².(320−175.u²)]} (3)
B = u²/1024.{256+u².[−128+u².(74−47.u²)]}   (4)

σ = s / b.A (1st approximation), σ′ = 2π     
while abs(σ−σ′) > 10-12 { (i.e. 0.06mm)  
        cos2σm = cos(2.σ1 + σ)  (5)
    Δσ = B.sinσ.{cos2σm + B/4.[cosσ.(−1 + 2.cos²2σm) − B/6.cos2σm.(−3 + 4.sin²σ).(−3 + 4.cos²2σm)]} (6)
    σ′ = σ   
    σ = s / b.A + Δσ    (7)
}        
φ2 = atan2(sinU1.cosσ + cosU1.sinσ.cosα1, (1−f).√[sin²α + (sinU1.sinσ − cosU1.cosσ.cosα1)²])    (8)
λ = atan2(sinσ.sinα1, cosU1.cosσ − sinU1.sinσ.cosα1)    (9)
C = f/16.cos²α.[4+f.(4−3.cos²α)]    (10)
L = λ − (1−C).f.sinα.{σ+C.sinσ.[cos2σm + C.cosσ.(−1 + 2.cos²2σm)]} (difference in longitude)    (11)
α2 = atan(sinα, −sinU1.sinσ + cosU1.cosσ.cosα1) (reverse azimuth)   (12)
p2 = (φ2, λ1+L)
2 голосов
/ 19 июня 2009

Как далеко друг от друга находятся эти две точки? Я фанат использования проекций Гаусса-Крюгера, которые отлично работают, если две точки находятся в пределах 100 морских миль или около того. Преимущество состоит в том, что вы можете работать с регулярной тригонометрией в локальном пространстве, а затем преобразовывать ее обратно в геодезические координаты.

Если они находятся дальше друг от друга, я возвращаюсь к Большому кругу, но с радиусом круга в качестве радиуса кривизны Земли в заданной точке вдоль желаемой оси, рассчитанной с использованием эллипсоида WGS-84.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...