EDIT:
На самом деле вы можете сделать это намного быстрее. Предыдущая функция может быть улучшена путем работы с суммированными столбцами следующим образом:
def rolling_means_faster1(array_a, n, first, size):
# Sum each relevant columns
sum_a = np.sum(array_a[:, first:(first + size + n - 1)], axis=0)
# Reshape as before
strides_b = (sum_a.strides[0], sum_a.strides[0])
array_b = np.lib.stride_tricks.as_strided(sum_a, (n, size), (strides_b))
# Average
v = np.sum(array_b, axis=1)
v /= (len(array_a) * size)
return v
Другим способом является работа с накопленными суммами, добавление и удаление по мере необходимости для каждого элемента вывода.
def rolling_means_faster2(array_a, n, first, size):
# Sum each relevant columns
sum_a = np.sum(array_a[:, first:(first + size + n - 1)], axis=0)
# Add a zero a the beginning so the next operation works fine
sum_a = np.insert(sum_a, 0, 0)
# Sum the initial `size` elements and add and remove partial sums as necessary
v = np.sum(sum_a[:size]) - np.cumsum(sum_a[:n]) + np.cumsum(sum_a[-n:])
# Average
v /= (size * len(array_a))
return v
Сравнительный анализ с предыдущим решением:
import numpy as np
np.random.seed(100)
array_a = np.random.random((1000, 1000))
n = 100
first = 100
size = 200
%timeit rolling_means_orig(array_a, n, first, size)
# 12.7 ms ± 55.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit rolling_means(array_a, n, first, size)
# 5.49 ms ± 43.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit rolling_means_faster1(array_a, n, first, size)
# 166 µs ± 874 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit rolling_means_faster2(array_a, n, first, size)
# 182 µs ± 2.04 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Так что последние два, похоже, очень близки по производительности. Это может зависеть от относительных размеров входов.
Это возможное векторизованное решение:
import numpy as np
# Data
np.random.seed(100)
array_a = np.random.random((100, 100))
# Take all the relevant columns
slice_a = array_a[:, 20:40 + 10]
# Make a "rolling window" with stride tricks
strides_b = (slice_a.strides[1], slice_a.strides[0], slice_a.strides[1])
array_b = np.lib.stride_tricks.as_strided(slice_a, (10, 100, 20), (strides_b))
# Take mean
result = np.mean(array_b, axis=(1, 2))
# Original method for testing correctness
vector_a = np.zeros(10)
idv1 = np.arange(10) + 20
idv2 = np.arange(10) + 40
for i in range(len(vector_a)):
vector_a[i] = np.mean(array_a[:,idv1[i]:idv2[i]])
print(np.allclose(vector_a, result))
# True
Вот быстрый тест IPython (размеры увеличены для оценки):
import numpy as np
def rolling_means(array_a, n, first, size):
slice_a = array_a[:, first:(first + size + n)]
strides_b = (slice_a.strides[1], slice_a.strides[0], slice_a.strides[1])
array_b = np.lib.stride_tricks.as_strided(slice_a, (n, len(array_a), size), (strides_b))
return np.mean(array_b, axis=(1, 2))
def rolling_means_orig(array_a, n, first, size):
vector_a = np.zeros(n)
idv1 = np.arange(n) + first
idv2 = np.arange(n) + (first + size)
for i in range(len(vector_a)):
vector_a[i] = np.mean(array_a[:,idv1[i]:idv2[i]])
return vector_a
np.random.seed(100)
array_a = np.random.random((1000, 1000))
n = 100
first = 100
size = 200
%timeit rolling_means(array_a, n, first, size)
# 5.48 ms ± 26.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit rolling_means_orig(array_a, n, first, size)
# 32.8 ms ± 762 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)