scala spark - группа, чтобы найти среднее значение между месяцами в диапазоне дат - PullRequest
0 голосов
/ 08 января 2019

Я смотрю на этот набор данных по аренде дронов. Я хотел бы попробовать сгруппировать по столбцу Result в Spark, чтобы показать средний результат ($) каждого дрона как функцию дней, проведенных в этом месяце.

т. значение в столбце «Результат», деленное на общее количество дней, затем связанное с днями в каждом месяце между начальной и конечной датами

+------+------------------+------------------+--------+
| Drone|     Start        |      End         | Result |
+------+------------------+------------------+--------+
| DR1    16/06/2013 10:30   22/08/2013 07:00    2786  |
| DR1    20/04/2013 23:30   16/06/2013 10:30    7126  |
| DR1    24/01/2013 23:00   20/04/2013 23:30    2964  |
| DR2    01/03/2014 19:00   07/05/2014 18:00    8884  |
| DR2    04/09/2015 09:00   04/11/2015 07:00    7828  |
| DR2    04/10/2013 05:00   24/12/2013 07:00    5700  |
+-----------------------------------------------------+

Это сложно, поскольку это долгосрочная аренда, а не значения, связанные с одной датой, и поэтому простой groupBy не работает для меня.

пожалуйста, обратите внимание, что дрон нанимается на поминутной основе в полном наборе данных, это немного более грязно.

Буду признателен за помощь в правильном мыслительном процессе для решения такой проблемы и как будет выглядеть код.

Как бы вы изменили то, что я написал ниже, чтобы рассматривать каждый месяц как отдельный случай? (Я могу основать его только на дате начала): /

val df_avgs = df.groupBy("Start").mean()
df_avgs.select($"Date",$"avg(Result)").show()

беря первый пример для каждого типа дрона, мой ожидаемый результат будет:

+------+-------+-------+---------+
|Drone | Month | Days  |   Avg   |
+------+-------+-------+---------+
|DR1     June      X       $YY   |
|DR1     July      X       $YY   |
|DR1     August    X       $YY   |
|DR2     March     Y       $ZZ   |
|DR2     April     Y       $ZZ   |
|DR2     May       Y       $ZZ   |
+--------------------------------+

Большое спасибо

1 Ответ

0 голосов
/ 08 января 2019

Не могли бы вы проверить это? Я использовал «МММ-гг» в форматировании даты, так что, если начальная и конечная даты охватывают годы, она будет легко различаться. Вы можете изменить это значение на «МММ», если вам нужен только один месяц.

scala> val df_t = Seq(("DR1","16/06/2013 10:30","22/08/2013 07:00",2786),("DR1","20/04/2013 23:30","16/06/2013 10:30",7126),("DR1","24/01/2013 23:00","20/04/2013 23:30",2964),("DR2","01/03/2014 19:00","07/05/2014 18:00",8884),("DR2","04/09/2015 09:00","04/11/2015 07:00",7828),("DR2","04/10/2013 05:00","24/12/2013 07:00",5700)).toDF("drone","start","end","result")
df_t: org.apache.spark.sql.DataFrame = [drone: string, start: string ... 2 more fields]

scala> val df = df_t.withColumn("start",to_timestamp('start,"dd/MM/yyyy HH:mm")).withColumn("end",to_timestamp('end,"dd/MM/yyyy HH:mm"))
df: org.apache.spark.sql.DataFrame = [drone: string, start: timestamp ... 2 more fields]

scala> df.show(false)
+-----+-------------------+-------------------+------+
|drone|start              |end                |result|
+-----+-------------------+-------------------+------+
|DR1  |2013-06-16 10:30:00|2013-08-22 07:00:00|2786  |
|DR1  |2013-04-20 23:30:00|2013-06-16 10:30:00|7126  |
|DR1  |2013-01-24 23:00:00|2013-04-20 23:30:00|2964  |
|DR2  |2014-03-01 19:00:00|2014-05-07 18:00:00|8884  |
|DR2  |2015-09-04 09:00:00|2015-11-04 07:00:00|7828  |
|DR2  |2013-10-04 05:00:00|2013-12-24 07:00:00|5700  |
+-----+-------------------+-------------------+------+


scala> :paste
// Entering paste mode (ctrl-D to finish)

def months_range(a:java.sql.Date,b:java.sql.Date):Seq[String]=
{
import java.time._
import java.time.format._
val start = a.toLocalDate
val end = b.toLocalDate
(start.toEpochDay until end.toEpochDay).map(LocalDate.ofEpochDay(_)).map(DateTimeFormatter.ofPattern("MMM-yy").format(_)).toSet.toSeq
}

// Exiting paste mode, now interpreting.

months_range: (a: java.sql.Date, b: java.sql.Date)Seq[String]

scala> val udf_months_range = udf(  months_range(_:java.sql.Date,_:java.sql.Date):Seq[String] )
udf_months_range: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function2>,ArrayType(StringType,true),Some(List(DateType, DateType)))

scala> val df2 = df.withColumn("days",datediff('end,'start)).withColumn("diff_months",udf_months_range('start,'end))
df2: org.apache.spark.sql.DataFrame = [drone: string, start: timestamp ... 4 more fields]

scala> df2.show(false)
+-----+-------------------+-------------------+------+----+--------------------------------+
|drone|start              |end                |result|days|diff_months                     |
+-----+-------------------+-------------------+------+----+--------------------------------+
|DR1  |2013-06-16 10:30:00|2013-08-22 07:00:00|2786  |67  |[Jun-13, Jul-13, Aug-13]        |
|DR1  |2013-04-20 23:30:00|2013-06-16 10:30:00|7126  |57  |[Apr-13, May-13, Jun-13]        |
|DR1  |2013-01-24 23:00:00|2013-04-20 23:30:00|2964  |86  |[Jan-13, Feb-13, Mar-13, Apr-13]|
|DR2  |2014-03-01 19:00:00|2014-05-07 18:00:00|8884  |67  |[Mar-14, Apr-14, May-14]        |
|DR2  |2015-09-04 09:00:00|2015-11-04 07:00:00|7828  |61  |[Sep-15, Oct-15, Nov-15]        |
|DR2  |2013-10-04 05:00:00|2013-12-24 07:00:00|5700  |81  |[Oct-13, Nov-13, Dec-13]        |
+-----+-------------------+-------------------+------+----+--------------------------------+


scala> df2.withColumn("month",explode('diff_months)).withColumn("Avg",'result/'days).select("drone","month","days","avg").show(false)
+-----+------+----+------------------+
|drone|month |days|avg               |
+-----+------+----+------------------+
|DR1  |Jun-13|67  |41.582089552238806|
|DR1  |Jul-13|67  |41.582089552238806|
|DR1  |Aug-13|67  |41.582089552238806|
|DR1  |Apr-13|57  |125.01754385964912|
|DR1  |May-13|57  |125.01754385964912|
|DR1  |Jun-13|57  |125.01754385964912|
|DR1  |Jan-13|86  |34.46511627906977 |
|DR1  |Feb-13|86  |34.46511627906977 |
|DR1  |Mar-13|86  |34.46511627906977 |
|DR1  |Apr-13|86  |34.46511627906977 |
|DR2  |Mar-14|67  |132.59701492537314|
|DR2  |Apr-14|67  |132.59701492537314|
|DR2  |May-14|67  |132.59701492537314|
|DR2  |Sep-15|61  |128.327868852459  |
|DR2  |Oct-15|61  |128.327868852459  |
|DR2  |Nov-15|61  |128.327868852459  |
|DR2  |Oct-13|81  |70.37037037037037 |
|DR2  |Nov-13|81  |70.37037037037037 |
|DR2  |Dec-13|81  |70.37037037037037 |
+-----+------+----+------------------+


scala>

EDIT1

Разделение на основе количества дней в каждом месяце. Код должен быть изменен с UDF.

scala> :paste
// Entering paste mode (ctrl-D to finish)

def months_range(a:java.sql.Date,b:java.sql.Date)=
{
import java.time._
import java.time.format._
val start = a.toLocalDate
val end = b.toLocalDate
(start.toEpochDay until end.toEpochDay).map(LocalDate.ofEpochDay(_)).map(DateTimeFormatter.ofPattern("MMM-yy").format(_)).groupBy(identity).map( x => (x._1,x._2.length) )
}

// Exiting paste mode, now interpreting.

months_range: (a: java.sql.Date, b: java.sql.Date)scala.collection.immutable.Map[String,Int]

scala> val udf_months_range = udf(  months_range(_:java.sql.Date,_:java.sql.Date):Map[String,Int] )
udf_months_range: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function2>,MapType(StringType,IntegerType,false),Some(List(DateType, DateType)))

scala>  val df2 = df.withColumn("days",datediff('end,'start)).withColumn("diff_months",udf_months_range('start,'end))
df2: org.apache.spark.sql.DataFrame = [drone: string, start: timestamp ... 4 more fields]

scala> val df3=df2.select(col("*"),explode('diff_months).as(Seq("month","month_days")) ).withColumn("mnth_rent",'result*('month_days/'days)).select("drone","month","month_days","days","mnth_rent")
df3: org.apache.spark.sql.DataFrame = [drone: string, month: string ... 3 more fields]

scala> df3.show(false)
+-----+------+----------+----+------------------+
|drone|month |month_days|days|mnth_rent         |
+-----+------+----------+----+------------------+
|DR1  |Aug-13|21        |67  |873.223880597015  |
|DR1  |Jul-13|31        |67  |1289.044776119403 |
|DR1  |Jun-13|15        |67  |623.7313432835821 |
|DR1  |May-13|31        |57  |3875.543859649123 |
|DR1  |Apr-13|11        |57  |1375.1929824561403|
|DR1  |Jun-13|15        |57  |1875.2631578947367|
|DR1  |Apr-13|19        |86  |654.8372093023256 |
|DR1  |Feb-13|28        |86  |965.0232558139536 |
|DR1  |Mar-13|31        |86  |1068.4186046511627|
|DR1  |Jan-13|8         |86  |275.72093023255815|
|DR2  |Apr-14|30        |67  |3977.910447761194 |
|DR2  |Mar-14|31        |67  |4110.507462686567 |
|DR2  |May-14|6         |67  |795.5820895522388 |
|DR2  |Nov-15|3         |61  |384.983606557377  |
|DR2  |Oct-15|31        |61  |3978.1639344262294|
|DR2  |Sep-15|27        |61  |3464.8524590163934|
|DR2  |Nov-13|30        |81  |2111.111111111111 |
|DR2  |Oct-13|28        |81  |1970.3703703703702|
|DR2  |Dec-13|23        |81  |1618.5185185185185|
+-----+------+----------+----+------------------+


scala> df3.groupBy('drone,'month).agg(sum('month_days).as("s_month_days"),sum('mnth_rent).as("mnth_rent"),max('days).as("days")).orderBy('drone,'month).show(false)
+-----+------+------------+------------------+----+
|drone|month |s_month_days|mnth_rent         |days|
+-----+------+------------+------------------+----+
|DR1  |Apr-13|30          |2030.030191758466 |86  |
|DR1  |Aug-13|21          |873.223880597015  |67  |
|DR1  |Feb-13|28          |965.0232558139536 |86  |
|DR1  |Jan-13|8           |275.72093023255815|86  |
|DR1  |Jul-13|31          |1289.044776119403 |67  |
|DR1  |Jun-13|30          |2498.994501178319 |67  |
|DR1  |Mar-13|31          |1068.4186046511627|86  |
|DR1  |May-13|31          |3875.543859649123 |57  |
|DR2  |Apr-14|30          |3977.910447761194 |67  |
|DR2  |Dec-13|23          |1618.5185185185185|81  |
|DR2  |Mar-14|31          |4110.507462686567 |67  |
|DR2  |May-14|6           |795.5820895522388 |67  |
|DR2  |Nov-13|30          |2111.111111111111 |81  |
|DR2  |Nov-15|3           |384.983606557377  |61  |
|DR2  |Oct-13|28          |1970.3703703703702|81  |
|DR2  |Oct-15|31          |3978.1639344262294|61  |
|DR2  |Sep-15|27          |3464.8524590163934|61  |
+-----+------+------------+------------------+----+


scala>
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...