Электронная таблица Excel, как показано ниже (примечание: идентифицируйте столбец A с дублированными значениями). Я хочу узнать сумму каждого Контрактного типа, взяв каждый ID, который считается только один раз (уникальный).
![enter image description here](https://i.stack.imgur.com/0SIiN.jpg)
data = {'ID': ["380689","380689","480562","480562","480562","14805","47089","56251","56251","56251","322624","322624","322624","85964","85964","85964","342225","342225","4589","23591","23591","235225"],
'Contract_type' : ["Other","Other","Type-I","Type-I","Type-I","Type-II","Type-II","Type-II","Type-II","Type-II","Type-II","Type-II","Type-II","Type-III","Type-III","Type-III","Part-time","Part-time","Part-time","Full-time","Full-time","Full-time"],
'Unit_Weight': [335,335,119,119,119,119,52,452,452,452,19,19,19,165,165,165,165,165,165,724,724,16],
'Test_time' : ["16:26","07:39","18:48","22:32","03:54","03:30","09:57","18:52","19:03","18:06","18:52","03:51","04:00","22:02","13:35","13:43","10:29","06:30","12:20","12:52","17:30","13:10"],
'Tested' : [1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0],
'Internal' : [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1]}
df = pd.DataFrame(data)
Я пытался:
print pd.pivot_table(df, index = ["Contract_type", "ID"]).Unit_Weight
Это дает:
Contract_type ID
Full-time 23591 724
235225 16
Other 380689 335
....
Но я хочу, чтобы он показывал что-то вроде: Полная занятость 740 и т. Д.
Я тоже пробовал:
print pd.pivot_table(df, index = ["Contract_type"], values=["Unit_Weight"], aggfunc = np.sum)
Даёт:
Full-time 1464 # this is not considering the duplicated IDs
Какой правильный способ исправить линию? Спасибо.