Традиционно для этого потребуется слияние, но я думаю, что вы можете воспользоваться арифметикой панд, выровненной по индексу, чтобы сделать это немного быстрее.
x = df2.set_index('Source')
y = df1.set_index('Target').rename_axis('Source')
y.columns = x.columns
x.add(y.reindex(x.index), fill_value=0).reset_index()
Source out_degree
0 1 4.0
1 2 5.0
2 3 5.0
3 4 29.0
4 5 58.0
"Традиционным" способом SQL для решения этой проблемы было бы использование слияния:
v = df1.merge(df2, left_on='Target', right_on='Source', how='right')
dct = dict(
Source=v['Source'],
out_degree=v['in_degree'].add(v['out_degree'], fill_value=0))
pd.DataFrame(dct).sort_values('Source')
Source out_degree
3 1 4.0
0 2 5.0
4 3 5.0
1 4 29.0
2 5 58.0