pandas.MultiIndex.from_tuples
Вам необходимо указать, какими будут уровни.
tups = [(0, 'A', 'X'), (1, 'A', 'Y'), (2, 'C', 'Y'), (3, 'B', 'Z')]
mcol = pd.MultiIndex.from_tuples(
tups, names=['Service Point', 'Characteristic_1', 'Characteristic_2'])
Затем включите их в спецификацию DataFrame
intdata = pd.DataFrame(
np.random.randint(0,1000,size=(10, 4)),
index=pd.date_range('2018-01-01',periods=10, freq='H'),
columns=mcol
)
intdata
Service Point 0 1 2 3
Characteristic_1 A A C B
Characteristic_2 X Y Y Z
2018-01-01 00:00:00 400 800 426 433
2018-01-01 01:00:00 920 123 250 113
2018-01-01 02:00:00 319 300 187 33
2018-01-01 03:00:00 673 230 696 472
2018-01-01 04:00:00 703 766 962 796
2018-01-01 05:00:00 322 295 414 734
2018-01-01 06:00:00 987 38 400 848
2018-01-01 07:00:00 350 275 494 833
2018-01-01 08:00:00 677 58 335 293
2018-01-01 09:00:00 284 195 742 355
Если у вас есть уровни в существующих списках, вы можете использовать zip
chr1 = [*'AACBADBC']
chr2 = [*'XYYZZJQJ']
tups = [*zip(range(8), chr1, chr2)]
mcol = pd.MultiIndex.from_tuples(
tups, names=['Service Point', 'Characteristic_1', 'Characteristic_2'])
tidx = pd.date_range('2018-01-01',periods=10, freq='H')
data = np.random.randint(0, 1000, size=(len(tidx), len(mcol)))
intdata = pd.DataFrame(data, tidx, mcol)
intdata
Service Point 0 1 2 3 4 5 6 7
Characteristic_1 A A C B A D B C
Characteristic_2 X Y Y Z Z J Q J
2018-01-01 00:00:00 311 306 868 48 894 584 989 548
2018-01-01 01:00:00 848 170 592 640 638 400 112 642
2018-01-01 02:00:00 906 660 883 149 907 848 247 875
2018-01-01 03:00:00 461 432 479 733 979 540 311 86
2018-01-01 04:00:00 849 471 480 836 834 235 901 22
2018-01-01 05:00:00 758 193 45 405 739 818 81 577
2018-01-01 06:00:00 752 647 799 688 588 496 37 504
2018-01-01 07:00:00 380 785 750 975 960 535 971 257
2018-01-01 08:00:00 187 422 915 863 290 483 423 473
2018-01-01 09:00:00 270 144 749 710 983 755 839 709
pandas.MultiIndex.from_arrays
Но опять же, если у вас есть уровни уже в отдельных списках, вам не нужно zip
сами их
chr1 = [*'AACBADBC']
chr2 = [*'XYYZZJQJ']
mcol = pd.MultiIndex.from_arrays(
[range(8), chr1, chr2],
names=['Service Point', 'Characteristic_1', 'Characteristic_2'])
tidx = pd.date_range('2018-01-01',periods=10, freq='H')
data = np.random.randint(0, 1000, size=(len(tidx), len(mcol)))
intdata = pd.DataFrame(data, tidx, mcol)
intdata
Service Point 0 1 2 3 4 5 6 7
Characteristic_1 A A C B A D B C
Characteristic_2 X Y Y Z Z J Q J
2018-01-01 00:00:00 311 306 868 48 894 584 989 548
2018-01-01 01:00:00 848 170 592 640 638 400 112 642
2018-01-01 02:00:00 906 660 883 149 907 848 247 875
2018-01-01 03:00:00 461 432 479 733 979 540 311 86
2018-01-01 04:00:00 849 471 480 836 834 235 901 22
2018-01-01 05:00:00 758 193 45 405 739 818 81 577
2018-01-01 06:00:00 752 647 799 688 588 496 37 504
2018-01-01 07:00:00 380 785 750 975 960 535 971 257
2018-01-01 08:00:00 187 422 915 863 290 483 423 473
2018-01-01 09:00:00 270 144 749 710 983 755 839 709